blob: 9dd611607990d23533f7b27a4c703372ed6172c9 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
170 if (src_hi == dest_lo) {
171 OpRegCopy(dest_hi, src_hi);
172 OpRegCopy(dest_lo, src_lo);
173 } else {
174 OpRegCopy(dest_lo, src_lo);
175 OpRegCopy(dest_hi, src_hi);
176 }
177 }
178 }
179}
180
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700181void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800182 RegLocation rl_result;
183 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
184 RegLocation rl_dest = mir_graph_->GetDest(mir);
185 rl_src = LoadValue(rl_src, kCoreReg);
186
187 // The kMirOpSelect has two variants, one for constants and one for moves.
188 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
189
190 if (is_constant_case) {
191 int true_val = mir->dalvikInsn.vB;
192 int false_val = mir->dalvikInsn.vC;
193 rl_result = EvalLoc(rl_dest, kCoreReg, true);
194
195 /*
196 * 1) When the true case is zero and result_reg is not same as src_reg:
197 * xor result_reg, result_reg
198 * cmp $0, src_reg
199 * mov t1, $false_case
200 * cmovnz result_reg, t1
201 * 2) When the false case is zero and result_reg is not same as src_reg:
202 * xor result_reg, result_reg
203 * cmp $0, src_reg
204 * mov t1, $true_case
205 * cmovz result_reg, t1
206 * 3) All other cases (we do compare first to set eflags):
207 * cmp $0, src_reg
208 * mov result_reg, $true_case
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 */
212 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
213 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
214 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
215 const bool catch_all_case = !(true_zero_case || false_zero_case);
216
217 if (true_zero_case || false_zero_case) {
218 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
219 }
220
221 if (true_zero_case || false_zero_case || catch_all_case) {
222 OpRegImm(kOpCmp, rl_src.low_reg, 0);
223 }
224
225 if (catch_all_case) {
226 OpRegImm(kOpMov, rl_result.low_reg, true_val);
227 }
228
229 if (true_zero_case || false_zero_case || catch_all_case) {
230 int immediateForTemp = false_zero_case ? true_val : false_val;
231 int temp1_reg = AllocTemp();
232 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
233
234 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
235 OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
236
237 FreeTemp(temp1_reg);
238 }
239 } else {
240 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
241 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
242 rl_true = LoadValue(rl_true, kCoreReg);
243 rl_false = LoadValue(rl_false, kCoreReg);
244 rl_result = EvalLoc(rl_dest, kCoreReg, true);
245
246 /*
247 * 1) When true case is already in place:
248 * cmp $0, src_reg
249 * cmovnz result_reg, false_reg
250 * 2) When false case is already in place:
251 * cmp $0, src_reg
252 * cmovz result_reg, true_reg
253 * 3) When neither cases are in place:
254 * cmp $0, src_reg
255 * mov result_reg, true_reg
256 * cmovnz result_reg, false_reg
257 */
258
259 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
260 OpRegImm(kOpCmp, rl_src.low_reg, 0);
261
262 if (rl_result.low_reg == rl_true.low_reg) {
263 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
264 } else if (rl_result.low_reg == rl_false.low_reg) {
265 OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
266 } else {
267 OpRegCopy(rl_result.low_reg, rl_true.low_reg);
268 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
269 }
270 }
271
272 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700273}
274
275void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700276 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700277 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
278 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000279 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800280
281 if (rl_src1.is_const) {
282 std::swap(rl_src1, rl_src2);
283 ccode = FlipComparisonOrder(ccode);
284 }
285 if (rl_src2.is_const) {
286 // Do special compare/branch against simple const operand
287 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
288 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
289 return;
290 }
291
Brian Carlstrom7940e442013-07-12 13:46:57 -0700292 FlushAllRegs();
293 LockCallTemps(); // Prepare for explicit register usage
294 LoadValueDirectWideFixed(rl_src1, r0, r1);
295 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296 // Swap operands and condition code to prevent use of zero flag.
297 if (ccode == kCondLe || ccode == kCondGt) {
298 // Compute (r3:r2) = (r3:r2) - (r1:r0)
299 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
300 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
301 } else {
302 // Compute (r1:r0) = (r1:r0) - (r3:r2)
303 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
304 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
305 }
306 switch (ccode) {
307 case kCondEq:
308 case kCondNe:
309 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
310 break;
311 case kCondLe:
312 ccode = kCondGe;
313 break;
314 case kCondGt:
315 ccode = kCondLt;
316 break;
317 case kCondLt:
318 case kCondGe:
319 break;
320 default:
321 LOG(FATAL) << "Unexpected ccode: " << ccode;
322 }
323 OpCondBranch(ccode, taken);
324}
325
Mark Mendell412d4f82013-12-18 13:32:36 -0800326void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
327 int64_t val, ConditionCode ccode) {
328 int32_t val_lo = Low32Bits(val);
329 int32_t val_hi = High32Bits(val);
330 LIR* taken = &block_label_list_[bb->taken];
331 LIR* not_taken = &block_label_list_[bb->fall_through];
332 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
333 int32_t low_reg = rl_src1.low_reg;
334 int32_t high_reg = rl_src1.high_reg;
335
336 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
337 int t_reg = AllocTemp();
338 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
339 FreeTemp(t_reg);
340 OpCondBranch(ccode, taken);
341 return;
342 }
343
344 OpRegImm(kOpCmp, high_reg, val_hi);
345 switch (ccode) {
346 case kCondEq:
347 case kCondNe:
348 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
349 break;
350 case kCondLt:
351 OpCondBranch(kCondLt, taken);
352 OpCondBranch(kCondGt, not_taken);
353 ccode = kCondUlt;
354 break;
355 case kCondLe:
356 OpCondBranch(kCondLt, taken);
357 OpCondBranch(kCondGt, not_taken);
358 ccode = kCondLs;
359 break;
360 case kCondGt:
361 OpCondBranch(kCondGt, taken);
362 OpCondBranch(kCondLt, not_taken);
363 ccode = kCondHi;
364 break;
365 case kCondGe:
366 OpCondBranch(kCondGt, taken);
367 OpCondBranch(kCondLt, not_taken);
368 ccode = kCondUge;
369 break;
370 default:
371 LOG(FATAL) << "Unexpected ccode: " << ccode;
372 }
373 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
374}
375
Mark Mendell2bf31e62014-01-23 12:13:40 -0800376void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
377 // It does not make sense to calculate magic and shift for zero divisor.
378 DCHECK_NE(divisor, 0);
379
380 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
381 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
382 * The magic number M and shift S can be calculated in the following way:
383 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
384 * where divisor(d) >=2.
385 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
386 * where divisor(d) <= -2.
387 * Thus nc can be calculated like:
388 * nc = 2^31 + 2^31 % d - 1, where d >= 2
389 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
390 *
391 * So the shift p is the smallest p satisfying
392 * 2^p > nc * (d - 2^p % d), where d >= 2
393 * 2^p > nc * (d + 2^p % d), where d <= -2.
394 *
395 * the magic number M is calcuated by
396 * M = (2^p + d - 2^p % d) / d, where d >= 2
397 * M = (2^p - d - 2^p % d) / d, where d <= -2.
398 *
399 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
400 * the shift number S.
401 */
402
403 int32_t p = 31;
404 const uint32_t two31 = 0x80000000U;
405
406 // Initialize the computations.
407 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
408 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
409 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
410 uint32_t quotient1 = two31 / abs_nc;
411 uint32_t remainder1 = two31 % abs_nc;
412 uint32_t quotient2 = two31 / abs_d;
413 uint32_t remainder2 = two31 % abs_d;
414
415 /*
416 * To avoid handling both positive and negative divisor, Hacker's Delight
417 * introduces a method to handle these 2 cases together to avoid duplication.
418 */
419 uint32_t delta;
420 do {
421 p++;
422 quotient1 = 2 * quotient1;
423 remainder1 = 2 * remainder1;
424 if (remainder1 >= abs_nc) {
425 quotient1++;
426 remainder1 = remainder1 - abs_nc;
427 }
428 quotient2 = 2 * quotient2;
429 remainder2 = 2 * remainder2;
430 if (remainder2 >= abs_d) {
431 quotient2++;
432 remainder2 = remainder2 - abs_d;
433 }
434 delta = abs_d - remainder2;
435 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
436
437 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
438 shift = p - 32;
439}
440
Brian Carlstrom7940e442013-07-12 13:46:57 -0700441RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700442 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700443 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
444 return rl_dest;
445}
446
Mark Mendell2bf31e62014-01-23 12:13:40 -0800447RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
448 int imm, bool is_div) {
449 // Use a multiply (and fixup) to perform an int div/rem by a constant.
450
451 // We have to use fixed registers, so flush all the temps.
452 FlushAllRegs();
453 LockCallTemps(); // Prepare for explicit register usage.
454
455 // Assume that the result will be in EDX.
456 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
457 r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
458
459 // handle 0x80000000 / -1 special case.
460 LIR *minint_branch = 0;
461 if (imm == -1) {
462 if (is_div) {
463 LoadValueDirectFixed(rl_src, r0);
464 OpRegImm(kOpCmp, r0, 0x80000000);
465 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
466
467 // for x != MIN_INT, x / -1 == -x.
468 NewLIR1(kX86Neg32R, r0);
469
470 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
471 // The target for cmp/jmp above.
472 minint_branch->target = NewLIR0(kPseudoTargetLabel);
473 // EAX already contains the right value (0x80000000),
474 branch_around->target = NewLIR0(kPseudoTargetLabel);
475 } else {
476 // x % -1 == 0.
477 LoadConstantNoClobber(r0, 0);
478 }
479 // For this case, return the result in EAX.
480 rl_result.low_reg = r0;
481 } else {
482 DCHECK(imm <= -2 || imm >= 2);
483 // Use H.S.Warren's Hacker's Delight Chapter 10 and
484 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
485 int magic, shift;
486 CalculateMagicAndShift(imm, magic, shift);
487
488 /*
489 * For imm >= 2,
490 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
491 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
492 * For imm <= -2,
493 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
494 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
495 * We implement this algorithm in the following way:
496 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
497 * 2. if imm > 0 and magic < 0, add numerator to EDX
498 * if imm < 0 and magic > 0, sub numerator from EDX
499 * 3. if S !=0, SAR S bits for EDX
500 * 4. add 1 to EDX if EDX < 0
501 * 5. Thus, EDX is the quotient
502 */
503
504 // Numerator into EAX.
505 int numerator_reg = -1;
506 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
507 // We will need the value later.
508 if (rl_src.location == kLocPhysReg) {
509 // We can use it directly.
510 DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
511 numerator_reg = rl_src.low_reg;
512 } else {
513 LoadValueDirectFixed(rl_src, r1);
514 numerator_reg = r1;
515 }
516 OpRegCopy(r0, numerator_reg);
517 } else {
518 // Only need this once. Just put it into EAX.
519 LoadValueDirectFixed(rl_src, r0);
520 }
521
522 // EDX = magic.
523 LoadConstantNoClobber(r2, magic);
524
525 // EDX:EAX = magic & dividend.
526 NewLIR1(kX86Imul32DaR, r2);
527
528 if (imm > 0 && magic < 0) {
529 // Add numerator to EDX.
530 DCHECK_NE(numerator_reg, -1);
531 NewLIR2(kX86Add32RR, r2, numerator_reg);
532 } else if (imm < 0 && magic > 0) {
533 DCHECK_NE(numerator_reg, -1);
534 NewLIR2(kX86Sub32RR, r2, numerator_reg);
535 }
536
537 // Do we need the shift?
538 if (shift != 0) {
539 // Shift EDX by 'shift' bits.
540 NewLIR2(kX86Sar32RI, r2, shift);
541 }
542
543 // Add 1 to EDX if EDX < 0.
544
545 // Move EDX to EAX.
546 OpRegCopy(r0, r2);
547
548 // Move sign bit to bit 0, zeroing the rest.
549 NewLIR2(kX86Shr32RI, r2, 31);
550
551 // EDX = EDX + EAX.
552 NewLIR2(kX86Add32RR, r2, r0);
553
554 // Quotient is in EDX.
555 if (!is_div) {
556 // We need to compute the remainder.
557 // Remainder is divisor - (quotient * imm).
558 DCHECK_NE(numerator_reg, -1);
559 OpRegCopy(r0, numerator_reg);
560
561 // EAX = numerator * imm.
562 OpRegRegImm(kOpMul, r2, r2, imm);
563
564 // EDX -= EAX.
565 NewLIR2(kX86Sub32RR, r0, r2);
566
567 // For this case, return the result in EAX.
568 rl_result.low_reg = r0;
569 }
570 }
571
572 return rl_result;
573}
574
Brian Carlstrom7940e442013-07-12 13:46:57 -0700575RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700576 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700577 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
578 return rl_dest;
579}
580
Mark Mendell2bf31e62014-01-23 12:13:40 -0800581RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
582 RegLocation rl_src2, bool is_div, bool check_zero) {
583 // We have to use fixed registers, so flush all the temps.
584 FlushAllRegs();
585 LockCallTemps(); // Prepare for explicit register usage.
586
587 // Load LHS into EAX.
588 LoadValueDirectFixed(rl_src1, r0);
589
590 // Load RHS into EBX.
591 LoadValueDirectFixed(rl_src2, r1);
592
593 // Copy LHS sign bit into EDX.
594 NewLIR0(kx86Cdq32Da);
595
596 if (check_zero) {
597 // Handle division by zero case.
598 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
599 }
600
601 // Have to catch 0x80000000/-1 case, or we will get an exception!
602 OpRegImm(kOpCmp, r1, -1);
603 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
604
605 // RHS is -1.
606 OpRegImm(kOpCmp, r0, 0x80000000);
607 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
608
609 // In 0x80000000/-1 case.
610 if (!is_div) {
611 // For DIV, EAX is already right. For REM, we need EDX 0.
612 LoadConstantNoClobber(r2, 0);
613 }
614 LIR* done = NewLIR1(kX86Jmp8, 0);
615
616 // Expected case.
617 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
618 minint_branch->target = minus_one_branch->target;
619 NewLIR1(kX86Idivmod32DaR, r1);
620 done->target = NewLIR0(kPseudoTargetLabel);
621
622 // Result is in EAX for div and EDX for rem.
623 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
624 r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
625 if (!is_div) {
626 rl_result.low_reg = r2;
627 }
628 return rl_result;
629}
630
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700631bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700632 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800633
634 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700635 RegLocation rl_src1 = info->args[0];
636 RegLocation rl_src2 = info->args[1];
637 rl_src1 = LoadValue(rl_src1, kCoreReg);
638 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800639
Brian Carlstrom7940e442013-07-12 13:46:57 -0700640 RegLocation rl_dest = InlineTarget(info);
641 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800642
643 /*
644 * If the result register is the same as the second element, then we need to be careful.
645 * The reason is that the first copy will inadvertently clobber the second element with
646 * the first one thus yielding the wrong result. Thus we do a swap in that case.
647 */
648 if (rl_result.low_reg == rl_src2.low_reg) {
649 std::swap(rl_src1, rl_src2);
650 }
651
652 // Pick the first integer as min/max.
653 OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
654
655 // If the integers are both in the same register, then there is nothing else to do
656 // because they are equal and we have already moved one into the result.
657 if (rl_src1.low_reg != rl_src2.low_reg) {
658 // It is possible we didn't pick correctly so do the actual comparison now.
659 OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
660
661 // Conditionally move the other integer into the destination register.
662 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
663 OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
664 }
665
Brian Carlstrom7940e442013-07-12 13:46:57 -0700666 StoreValue(rl_dest, rl_result);
667 return true;
668}
669
Vladimir Markoe508a202013-11-04 15:24:22 +0000670bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
671 RegLocation rl_src_address = info->args[0]; // long address
672 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800673 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000674 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
675 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
676 if (size == kLong) {
677 // Unaligned access is allowed on x86.
678 LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
679 StoreValueWide(rl_dest, rl_result);
680 } else {
681 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
682 // Unaligned access is allowed on x86.
683 LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
684 StoreValue(rl_dest, rl_result);
685 }
686 return true;
687}
688
689bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
690 RegLocation rl_src_address = info->args[0]; // long address
691 rl_src_address.wide = 0; // ignore high half in info->args[1]
692 RegLocation rl_src_value = info->args[2]; // [size] value
693 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
694 if (size == kLong) {
695 // Unaligned access is allowed on x86.
696 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
697 StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
698 } else {
699 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
700 // Unaligned access is allowed on x86.
701 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
702 StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
703 }
704 return true;
705}
706
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700707void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700708 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
709}
710
Ian Rogers468532e2013-08-05 10:56:33 -0700711void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
712 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700713}
714
Vladimir Marko1c282e22013-11-21 14:49:47 +0000715bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000716 DCHECK_EQ(cu_->instruction_set, kX86);
717 // Unused - RegLocation rl_src_unsafe = info->args[0];
718 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
719 RegLocation rl_src_offset = info->args[2]; // long low
720 rl_src_offset.wide = 0; // ignore high half in info->args[3]
721 RegLocation rl_src_expected = info->args[4]; // int, long or Object
722 // If is_long, high half is in info->args[5]
723 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
724 // If is_long, high half is in info->args[7]
725
726 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000727 FlushAllRegs();
728 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000729 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
730 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000731 NewLIR1(kX86Push32R, rDI);
732 MarkTemp(rDI);
733 LockTemp(rDI);
734 NewLIR1(kX86Push32R, rSI);
735 MarkTemp(rSI);
736 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000737 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
738 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
739 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000740 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
741 FreeTemp(rSI);
742 UnmarkTemp(rSI);
743 NewLIR1(kX86Pop32R, rSI);
744 FreeTemp(rDI);
745 UnmarkTemp(rDI);
746 NewLIR1(kX86Pop32R, rDI);
747 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000748 } else {
749 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
750 FlushReg(r0);
751 LockTemp(r0);
752
753 // Release store semantics, get the barrier out of the way. TODO: revisit
754 GenMemBarrier(kStoreLoad);
755
756 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
757 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
758
759 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
760 // Mark card for object assuming new value is stored.
761 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
762 MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
763 LockTemp(r0);
764 }
765
766 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
767 LoadValueDirect(rl_src_expected, r0);
768 NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
769
770 FreeTemp(r0);
771 }
772
773 // Convert ZF to boolean
774 RegLocation rl_dest = InlineTarget(info); // boolean place for result
775 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
776 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
777 NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
778 StoreValue(rl_dest, rl_result);
779 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700780}
781
782LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800783 CHECK(base_of_code_ != nullptr);
784
785 // Address the start of the method
786 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
787 LoadValueDirectFixed(rl_method, reg);
788 store_method_addr_used_ = true;
789
790 // Load the proper value from the literal area.
791 // We don't know the proper offset for the value, so pick one that will force
792 // 4 byte offset. We will fix this up in the assembler later to have the right
793 // value.
794 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
795 res->target = target;
796 res->flags.fixup = kFixupLoad;
797 SetMemRefType(res, true, kLiteral);
798 store_method_addr_used_ = true;
799 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700800}
801
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700802LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700803 LOG(FATAL) << "Unexpected use of OpVldm for x86";
804 return NULL;
805}
806
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700807LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700808 LOG(FATAL) << "Unexpected use of OpVstm for x86";
809 return NULL;
810}
811
812void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
813 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700814 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 int t_reg = AllocTemp();
816 OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
817 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
818 FreeTemp(t_reg);
819 if (first_bit != 0) {
820 OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
821 }
822}
823
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700824void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800825 // We are not supposed to clobber either of the provided registers, so allocate
826 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700827 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800828
829 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700830 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800831
832 // In case of zero, throw ArithmeticException.
833 GenCheck(kCondEq, kThrowDivZero);
834
835 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700836 FreeTemp(t_reg);
837}
838
839// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700840LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700841 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700842 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
843}
844
845// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700846LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700847 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800848 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700849}
850
buzbee11b63d12013-08-27 07:34:17 -0700851bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700852 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700853 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
854 return false;
855}
856
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700857LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700858 LOG(FATAL) << "Unexpected use of OpIT in x86";
859 return NULL;
860}
861
Mark Mendell4708dcd2014-01-22 09:05:18 -0800862void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
863 switch (val) {
864 case 0:
865 NewLIR2(kX86Xor32RR, dest, dest);
866 break;
867 case 1:
868 OpRegCopy(dest, src);
869 break;
870 default:
871 OpRegRegImm(kOpMul, dest, src, val);
872 break;
873 }
874}
875
876void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
877 LIR *m;
878 switch (val) {
879 case 0:
880 NewLIR2(kX86Xor32RR, dest, dest);
881 break;
882 case 1:
883 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
884 break;
885 default:
886 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
887 displacement, val);
888 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
889 break;
890 }
891}
892
Mark Mendelle02d48f2014-01-15 11:19:23 -0800893void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700894 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800895 if (rl_src1.is_const) {
896 std::swap(rl_src1, rl_src2);
897 }
898 // Are we multiplying by a constant?
899 if (rl_src2.is_const) {
900 // Do special compare/branch against simple const operand
901 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
902 if (val == 0) {
903 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
904 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
905 OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
906 StoreValueWide(rl_dest, rl_result);
907 return;
908 } else if (val == 1) {
909 rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
910 StoreValueWide(rl_dest, rl_src1);
911 return;
912 } else if (val == 2) {
913 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
914 return;
915 } else if (IsPowerOfTwo(val)) {
916 int shift_amount = LowestSetBit(val);
917 if (!BadOverlap(rl_src1, rl_dest)) {
918 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
919 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
920 rl_src1, shift_amount);
921 StoreValueWide(rl_dest, rl_result);
922 return;
923 }
924 }
925
926 // Okay, just bite the bullet and do it.
927 int32_t val_lo = Low32Bits(val);
928 int32_t val_hi = High32Bits(val);
929 FlushAllRegs();
930 LockCallTemps(); // Prepare for explicit register usage.
931 rl_src1 = UpdateLocWide(rl_src1);
932 bool src1_in_reg = rl_src1.location == kLocPhysReg;
933 int displacement = SRegOffset(rl_src1.s_reg_low);
934
935 // ECX <- 1H * 2L
936 // EAX <- 1L * 2H
937 if (src1_in_reg) {
938 GenImulRegImm(r1, rl_src1.high_reg, val_lo);
939 GenImulRegImm(r0, rl_src1.low_reg, val_hi);
940 } else {
941 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
942 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
943 }
944
945 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
946 NewLIR2(kX86Add32RR, r1, r0);
947
948 // EAX <- 2L
949 LoadConstantNoClobber(r0, val_lo);
950
951 // EDX:EAX <- 2L * 1L (double precision)
952 if (src1_in_reg) {
953 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
954 } else {
955 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
956 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
957 true /* is_load */, true /* is_64bit */);
958 }
959
960 // EDX <- EDX + ECX (add high words)
961 NewLIR2(kX86Add32RR, r2, r1);
962
963 // Result is EDX:EAX
964 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
965 INVALID_SREG, INVALID_SREG};
966 StoreValueWide(rl_dest, rl_result);
967 return;
968 }
969
970 // Nope. Do it the hard way
971 FlushAllRegs();
972 LockCallTemps(); // Prepare for explicit register usage.
973 rl_src1 = UpdateLocWide(rl_src1);
974 rl_src2 = UpdateLocWide(rl_src2);
975
976 // At this point, the VRs are in their home locations.
977 bool src1_in_reg = rl_src1.location == kLocPhysReg;
978 bool src2_in_reg = rl_src2.location == kLocPhysReg;
979
980 // ECX <- 1H
981 if (src1_in_reg) {
982 NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
983 } else {
984 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
985 kWord, GetSRegHi(rl_src1.s_reg_low));
986 }
987
988 // EAX <- 2H
989 if (src2_in_reg) {
990 NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
991 } else {
992 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
993 kWord, GetSRegHi(rl_src2.s_reg_low));
994 }
995
996 // EAX <- EAX * 1L (2H * 1L)
997 if (src1_in_reg) {
998 NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
999 } else {
1000 int displacement = SRegOffset(rl_src1.s_reg_low);
1001 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1002 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1003 true /* is_load */, true /* is_64bit */);
1004 }
1005
1006 // ECX <- ECX * 2L (1H * 2L)
1007 if (src2_in_reg) {
1008 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1009 } else {
1010 int displacement = SRegOffset(rl_src2.s_reg_low);
1011 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1012 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1013 true /* is_load */, true /* is_64bit */);
1014 }
1015
1016 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1017 NewLIR2(kX86Add32RR, r1, r0);
1018
1019 // EAX <- 2L
1020 if (src2_in_reg) {
1021 NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1022 } else {
1023 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1024 kWord, rl_src2.s_reg_low);
1025 }
1026
1027 // EDX:EAX <- 2L * 1L (double precision)
1028 if (src1_in_reg) {
1029 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1030 } else {
1031 int displacement = SRegOffset(rl_src1.s_reg_low);
1032 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1033 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1034 true /* is_load */, true /* is_64bit */);
1035 }
1036
1037 // EDX <- EDX + ECX (add high words)
1038 NewLIR2(kX86Add32RR, r2, r1);
1039
1040 // Result is EDX:EAX
1041 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1042 INVALID_SREG, INVALID_SREG};
1043 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001044}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001045
1046void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1047 Instruction::Code op) {
1048 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1049 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1050 if (rl_src.location == kLocPhysReg) {
1051 // Both operands are in registers.
1052 if (rl_dest.low_reg == rl_src.high_reg) {
1053 // The registers are the same, so we would clobber it before the use.
1054 int temp_reg = AllocTemp();
1055 OpRegCopy(temp_reg, rl_dest.low_reg);
1056 rl_src.high_reg = temp_reg;
1057 }
1058 NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1059
1060 x86op = GetOpcode(op, rl_dest, rl_src, true);
1061 NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1062 FreeTemp(rl_src.low_reg);
1063 FreeTemp(rl_src.high_reg);
1064 return;
1065 }
1066
1067 // RHS is in memory.
1068 DCHECK((rl_src.location == kLocDalvikFrame) ||
1069 (rl_src.location == kLocCompilerTemp));
1070 int rBase = TargetReg(kSp);
1071 int displacement = SRegOffset(rl_src.s_reg_low);
1072
1073 LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1074 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1075 true /* is_load */, true /* is64bit */);
1076 x86op = GetOpcode(op, rl_dest, rl_src, true);
1077 lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1078 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1079 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001080}
1081
Mark Mendelle02d48f2014-01-15 11:19:23 -08001082void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1083 rl_dest = UpdateLocWide(rl_dest);
1084 if (rl_dest.location == kLocPhysReg) {
1085 // Ensure we are in a register pair
1086 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1087
1088 rl_src = UpdateLocWide(rl_src);
1089 GenLongRegOrMemOp(rl_result, rl_src, op);
1090 StoreFinalValueWide(rl_dest, rl_result);
1091 return;
1092 }
1093
1094 // It wasn't in registers, so it better be in memory.
1095 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1096 (rl_dest.location == kLocCompilerTemp));
1097 rl_src = LoadValueWide(rl_src, kCoreReg);
1098
1099 // Operate directly into memory.
1100 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1101 int rBase = TargetReg(kSp);
1102 int displacement = SRegOffset(rl_dest.s_reg_low);
1103
1104 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1105 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1106 false /* is_load */, true /* is64bit */);
1107 x86op = GetOpcode(op, rl_dest, rl_src, true);
1108 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1109 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1110 false /* is_load */, true /* is64bit */);
1111 FreeTemp(rl_src.low_reg);
1112 FreeTemp(rl_src.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001113}
1114
Mark Mendelle02d48f2014-01-15 11:19:23 -08001115void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1116 RegLocation rl_src2, Instruction::Code op,
1117 bool is_commutative) {
1118 // Is this really a 2 operand operation?
1119 switch (op) {
1120 case Instruction::ADD_LONG_2ADDR:
1121 case Instruction::SUB_LONG_2ADDR:
1122 case Instruction::AND_LONG_2ADDR:
1123 case Instruction::OR_LONG_2ADDR:
1124 case Instruction::XOR_LONG_2ADDR:
1125 GenLongArith(rl_dest, rl_src2, op);
1126 return;
1127 default:
1128 break;
1129 }
1130
1131 if (rl_dest.location == kLocPhysReg) {
1132 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1133
1134 // We are about to clobber the LHS, so it needs to be a temp.
1135 rl_result = ForceTempWide(rl_result);
1136
1137 // Perform the operation using the RHS.
1138 rl_src2 = UpdateLocWide(rl_src2);
1139 GenLongRegOrMemOp(rl_result, rl_src2, op);
1140
1141 // And now record that the result is in the temp.
1142 StoreFinalValueWide(rl_dest, rl_result);
1143 return;
1144 }
1145
1146 // It wasn't in registers, so it better be in memory.
1147 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1148 (rl_dest.location == kLocCompilerTemp));
1149 rl_src1 = UpdateLocWide(rl_src1);
1150 rl_src2 = UpdateLocWide(rl_src2);
1151
1152 // Get one of the source operands into temporary register.
1153 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1154 if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1155 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1156 } else if (is_commutative) {
1157 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1158 // We need at least one of them to be a temporary.
1159 if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1160 rl_src1 = ForceTempWide(rl_src1);
1161 }
1162 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1163 } else {
1164 // Need LHS to be the temp.
1165 rl_src1 = ForceTempWide(rl_src1);
1166 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1167 }
1168
1169 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001170}
1171
Mark Mendelle02d48f2014-01-15 11:19:23 -08001172void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001173 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001174 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1175}
1176
1177void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1178 RegLocation rl_src1, RegLocation rl_src2) {
1179 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1180}
1181
1182void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1183 RegLocation rl_src1, RegLocation rl_src2) {
1184 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1185}
1186
1187void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1188 RegLocation rl_src1, RegLocation rl_src2) {
1189 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1190}
1191
1192void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1193 RegLocation rl_src1, RegLocation rl_src2) {
1194 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001195}
1196
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001197void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001198 rl_src = LoadValueWide(rl_src, kCoreReg);
1199 RegLocation rl_result = ForceTempWide(rl_src);
1200 if (rl_dest.low_reg == rl_src.high_reg) {
1201 // The registers are the same, so we would clobber it before the use.
1202 int temp_reg = AllocTemp();
1203 OpRegCopy(temp_reg, rl_result.low_reg);
1204 rl_result.high_reg = temp_reg;
1205 }
1206 OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
1207 OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
1208 OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001209 StoreValueWide(rl_dest, rl_result);
1210}
1211
Ian Rogers468532e2013-08-05 10:56:33 -07001212void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001213 X86OpCode opcode = kX86Bkpt;
1214 switch (op) {
1215 case kOpCmp: opcode = kX86Cmp32RT; break;
1216 case kOpMov: opcode = kX86Mov32RT; break;
1217 default:
1218 LOG(FATAL) << "Bad opcode: " << op;
1219 break;
1220 }
Ian Rogers468532e2013-08-05 10:56:33 -07001221 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001222}
1223
1224/*
1225 * Generate array load
1226 */
1227void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001228 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001229 RegisterClass reg_class = oat_reg_class_by_size(size);
1230 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001231 RegLocation rl_result;
1232 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001233
Mark Mendell343adb52013-12-18 06:02:17 -08001234 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001235 if (size == kLong || size == kDouble) {
1236 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1237 } else {
1238 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1239 }
1240
Mark Mendell343adb52013-12-18 06:02:17 -08001241 bool constant_index = rl_index.is_const;
1242 int32_t constant_index_value = 0;
1243 if (!constant_index) {
1244 rl_index = LoadValue(rl_index, kCoreReg);
1245 } else {
1246 constant_index_value = mir_graph_->ConstantValue(rl_index);
1247 // If index is constant, just fold it into the data offset
1248 data_offset += constant_index_value << scale;
1249 // treat as non array below
1250 rl_index.low_reg = INVALID_REG;
1251 }
1252
Brian Carlstrom7940e442013-07-12 13:46:57 -07001253 /* null object? */
1254 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1255
1256 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001257 if (constant_index) {
1258 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1259 constant_index_value, kThrowConstantArrayBounds);
1260 } else {
1261 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1262 len_offset, kThrowArrayBounds);
1263 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001264 }
Mark Mendell343adb52013-12-18 06:02:17 -08001265 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001266 if ((size == kLong) || (size == kDouble)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001267 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001268 rl_result.high_reg, size, INVALID_SREG);
1269 StoreValueWide(rl_dest, rl_result);
1270 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001271 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1272 data_offset, rl_result.low_reg, INVALID_REG, size,
1273 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001274 StoreValue(rl_dest, rl_result);
1275 }
1276}
1277
1278/*
1279 * Generate array store
1280 *
1281 */
1282void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001283 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001284 RegisterClass reg_class = oat_reg_class_by_size(size);
1285 int len_offset = mirror::Array::LengthOffset().Int32Value();
1286 int data_offset;
1287
1288 if (size == kLong || size == kDouble) {
1289 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1290 } else {
1291 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1292 }
1293
1294 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001295 bool constant_index = rl_index.is_const;
1296 int32_t constant_index_value = 0;
1297 if (!constant_index) {
1298 rl_index = LoadValue(rl_index, kCoreReg);
1299 } else {
1300 // If index is constant, just fold it into the data offset
1301 constant_index_value = mir_graph_->ConstantValue(rl_index);
1302 data_offset += constant_index_value << scale;
1303 // treat as non array below
1304 rl_index.low_reg = INVALID_REG;
1305 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001306
1307 /* null object? */
1308 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1309
1310 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001311 if (constant_index) {
1312 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1313 constant_index_value, kThrowConstantArrayBounds);
1314 } else {
1315 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1316 len_offset, kThrowArrayBounds);
1317 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001318 }
1319 if ((size == kLong) || (size == kDouble)) {
1320 rl_src = LoadValueWide(rl_src, reg_class);
1321 } else {
1322 rl_src = LoadValue(rl_src, reg_class);
1323 }
1324 // If the src reg can't be byte accessed, move it to a temp first.
1325 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1326 int temp = AllocTemp();
1327 OpRegCopy(temp, rl_src.low_reg);
1328 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1329 INVALID_REG, size, INVALID_SREG);
1330 } else {
1331 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1332 rl_src.high_reg, size, INVALID_SREG);
1333 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001334 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001335 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001336 if (!constant_index) {
1337 FreeTemp(rl_index.low_reg);
1338 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001339 MarkGCCard(rl_src.low_reg, rl_array.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001340 }
1341}
1342
Mark Mendell4708dcd2014-01-22 09:05:18 -08001343RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1344 RegLocation rl_src, int shift_amount) {
1345 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1346 switch (opcode) {
1347 case Instruction::SHL_LONG:
1348 case Instruction::SHL_LONG_2ADDR:
1349 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1350 if (shift_amount == 32) {
1351 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1352 LoadConstant(rl_result.low_reg, 0);
1353 } else if (shift_amount > 31) {
1354 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1355 FreeTemp(rl_src.high_reg);
1356 NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1357 LoadConstant(rl_result.low_reg, 0);
1358 } else {
1359 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1360 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1361 NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1362 NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1363 }
1364 break;
1365 case Instruction::SHR_LONG:
1366 case Instruction::SHR_LONG_2ADDR:
1367 if (shift_amount == 32) {
1368 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1369 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1370 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1371 } else if (shift_amount > 31) {
1372 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1373 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1374 NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1375 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1376 } else {
1377 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1378 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1379 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1380 NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1381 }
1382 break;
1383 case Instruction::USHR_LONG:
1384 case Instruction::USHR_LONG_2ADDR:
1385 if (shift_amount == 32) {
1386 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1387 LoadConstant(rl_result.high_reg, 0);
1388 } else if (shift_amount > 31) {
1389 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1390 NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1391 LoadConstant(rl_result.high_reg, 0);
1392 } else {
1393 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1394 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1395 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1396 NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1397 }
1398 break;
1399 default:
1400 LOG(FATAL) << "Unexpected case";
1401 }
1402 return rl_result;
1403}
1404
Brian Carlstrom7940e442013-07-12 13:46:57 -07001405void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001406 RegLocation rl_src, RegLocation rl_shift) {
1407 // Per spec, we only care about low 6 bits of shift amount.
1408 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1409 if (shift_amount == 0) {
1410 rl_src = LoadValueWide(rl_src, kCoreReg);
1411 StoreValueWide(rl_dest, rl_src);
1412 return;
1413 } else if (shift_amount == 1 &&
1414 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1415 // Need to handle this here to avoid calling StoreValueWide twice.
1416 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1417 return;
1418 }
1419 if (BadOverlap(rl_src, rl_dest)) {
1420 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1421 return;
1422 }
1423 rl_src = LoadValueWide(rl_src, kCoreReg);
1424 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1425 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001426}
1427
1428void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001429 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001430 switch (opcode) {
1431 case Instruction::ADD_LONG:
1432 case Instruction::AND_LONG:
1433 case Instruction::OR_LONG:
1434 case Instruction::XOR_LONG:
1435 if (rl_src2.is_const) {
1436 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1437 } else {
1438 DCHECK(rl_src1.is_const);
1439 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1440 }
1441 break;
1442 case Instruction::SUB_LONG:
1443 case Instruction::SUB_LONG_2ADDR:
1444 if (rl_src2.is_const) {
1445 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1446 } else {
1447 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1448 }
1449 break;
1450 case Instruction::ADD_LONG_2ADDR:
1451 case Instruction::OR_LONG_2ADDR:
1452 case Instruction::XOR_LONG_2ADDR:
1453 case Instruction::AND_LONG_2ADDR:
1454 if (rl_src2.is_const) {
1455 GenLongImm(rl_dest, rl_src2, opcode);
1456 } else {
1457 DCHECK(rl_src1.is_const);
1458 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1459 }
1460 break;
1461 default:
1462 // Default - bail to non-const handler.
1463 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1464 break;
1465 }
1466}
1467
1468bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1469 switch (op) {
1470 case Instruction::AND_LONG_2ADDR:
1471 case Instruction::AND_LONG:
1472 return value == -1;
1473 case Instruction::OR_LONG:
1474 case Instruction::OR_LONG_2ADDR:
1475 case Instruction::XOR_LONG:
1476 case Instruction::XOR_LONG_2ADDR:
1477 return value == 0;
1478 default:
1479 return false;
1480 }
1481}
1482
1483X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1484 bool is_high_op) {
1485 bool rhs_in_mem = rhs.location != kLocPhysReg;
1486 bool dest_in_mem = dest.location != kLocPhysReg;
1487 DCHECK(!rhs_in_mem || !dest_in_mem);
1488 switch (op) {
1489 case Instruction::ADD_LONG:
1490 case Instruction::ADD_LONG_2ADDR:
1491 if (dest_in_mem) {
1492 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1493 } else if (rhs_in_mem) {
1494 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1495 }
1496 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1497 case Instruction::SUB_LONG:
1498 case Instruction::SUB_LONG_2ADDR:
1499 if (dest_in_mem) {
1500 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1501 } else if (rhs_in_mem) {
1502 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1503 }
1504 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1505 case Instruction::AND_LONG_2ADDR:
1506 case Instruction::AND_LONG:
1507 if (dest_in_mem) {
1508 return kX86And32MR;
1509 }
1510 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1511 case Instruction::OR_LONG:
1512 case Instruction::OR_LONG_2ADDR:
1513 if (dest_in_mem) {
1514 return kX86Or32MR;
1515 }
1516 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1517 case Instruction::XOR_LONG:
1518 case Instruction::XOR_LONG_2ADDR:
1519 if (dest_in_mem) {
1520 return kX86Xor32MR;
1521 }
1522 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1523 default:
1524 LOG(FATAL) << "Unexpected opcode: " << op;
1525 return kX86Add32RR;
1526 }
1527}
1528
1529X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1530 int32_t value) {
1531 bool in_mem = loc.location != kLocPhysReg;
1532 bool byte_imm = IS_SIMM8(value);
1533 DCHECK(in_mem || !IsFpReg(loc.low_reg));
1534 switch (op) {
1535 case Instruction::ADD_LONG:
1536 case Instruction::ADD_LONG_2ADDR:
1537 if (byte_imm) {
1538 if (in_mem) {
1539 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1540 }
1541 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1542 }
1543 if (in_mem) {
1544 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1545 }
1546 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1547 case Instruction::SUB_LONG:
1548 case Instruction::SUB_LONG_2ADDR:
1549 if (byte_imm) {
1550 if (in_mem) {
1551 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1552 }
1553 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1554 }
1555 if (in_mem) {
1556 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1557 }
1558 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1559 case Instruction::AND_LONG_2ADDR:
1560 case Instruction::AND_LONG:
1561 if (byte_imm) {
1562 return in_mem ? kX86And32MI8 : kX86And32RI8;
1563 }
1564 return in_mem ? kX86And32MI : kX86And32RI;
1565 case Instruction::OR_LONG:
1566 case Instruction::OR_LONG_2ADDR:
1567 if (byte_imm) {
1568 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1569 }
1570 return in_mem ? kX86Or32MI : kX86Or32RI;
1571 case Instruction::XOR_LONG:
1572 case Instruction::XOR_LONG_2ADDR:
1573 if (byte_imm) {
1574 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1575 }
1576 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1577 default:
1578 LOG(FATAL) << "Unexpected opcode: " << op;
1579 return kX86Add32MI;
1580 }
1581}
1582
1583void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1584 DCHECK(rl_src.is_const);
1585 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1586 int32_t val_lo = Low32Bits(val);
1587 int32_t val_hi = High32Bits(val);
1588 rl_dest = UpdateLocWide(rl_dest);
1589
1590 // Can we just do this into memory?
1591 if ((rl_dest.location == kLocDalvikFrame) ||
1592 (rl_dest.location == kLocCompilerTemp)) {
1593 int rBase = TargetReg(kSp);
1594 int displacement = SRegOffset(rl_dest.s_reg_low);
1595
1596 if (!IsNoOp(op, val_lo)) {
1597 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1598 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1599 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1600 false /* is_load */, true /* is64bit */);
1601 }
1602 if (!IsNoOp(op, val_hi)) {
1603 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1604 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1605 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1606 false /* is_load */, true /* is64bit */);
1607 }
1608 return;
1609 }
1610
1611 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1612 DCHECK_EQ(rl_result.location, kLocPhysReg);
1613 DCHECK(!IsFpReg(rl_result.low_reg));
1614
1615 if (!IsNoOp(op, val_lo)) {
1616 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1617 NewLIR2(x86op, rl_result.low_reg, val_lo);
1618 }
1619 if (!IsNoOp(op, val_hi)) {
1620 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1621 NewLIR2(x86op, rl_result.high_reg, val_hi);
1622 }
1623 StoreValueWide(rl_dest, rl_result);
1624}
1625
1626void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1627 RegLocation rl_src2, Instruction::Code op) {
1628 DCHECK(rl_src2.is_const);
1629 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1630 int32_t val_lo = Low32Bits(val);
1631 int32_t val_hi = High32Bits(val);
1632 rl_dest = UpdateLocWide(rl_dest);
1633 rl_src1 = UpdateLocWide(rl_src1);
1634
1635 // Can we do this directly into the destination registers?
1636 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1637 rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1638 !IsFpReg(rl_dest.low_reg)) {
1639 if (!IsNoOp(op, val_lo)) {
1640 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1641 NewLIR2(x86op, rl_dest.low_reg, val_lo);
1642 }
1643 if (!IsNoOp(op, val_hi)) {
1644 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1645 NewLIR2(x86op, rl_dest.high_reg, val_hi);
1646 }
1647 return;
1648 }
1649
1650 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1651 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1652
1653 // We need the values to be in a temporary
1654 RegLocation rl_result = ForceTempWide(rl_src1);
1655 if (!IsNoOp(op, val_lo)) {
1656 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1657 NewLIR2(x86op, rl_result.low_reg, val_lo);
1658 }
1659 if (!IsNoOp(op, val_hi)) {
1660 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1661 NewLIR2(x86op, rl_result.high_reg, val_hi);
1662 }
1663
1664 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001665}
1666
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001667// For final classes there are no sub-classes to check and so we can answer the instance-of
1668// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1669void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1670 RegLocation rl_dest, RegLocation rl_src) {
1671 RegLocation object = LoadValue(rl_src, kCoreReg);
1672 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1673 int result_reg = rl_result.low_reg;
1674
1675 // SETcc only works with EAX..EDX.
1676 if (result_reg == object.low_reg || result_reg >= 4) {
1677 result_reg = AllocTypedTemp(false, kCoreReg);
1678 DCHECK_LT(result_reg, 4);
1679 }
1680
1681 // Assume that there is no match.
1682 LoadConstant(result_reg, 0);
1683 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1684
1685 int check_class = AllocTypedTemp(false, kCoreReg);
1686
1687 // If Method* is already in a register, we can save a copy.
1688 RegLocation rl_method = mir_graph_->GetMethodLoc();
1689 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1690 (sizeof(mirror::Class*) * type_idx);
1691
1692 if (rl_method.location == kLocPhysReg) {
1693 if (use_declaring_class) {
1694 LoadWordDisp(rl_method.low_reg,
1695 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1696 check_class);
1697 } else {
1698 LoadWordDisp(rl_method.low_reg,
1699 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1700 check_class);
1701 LoadWordDisp(check_class, offset_of_type, check_class);
1702 }
1703 } else {
1704 LoadCurrMethodDirect(check_class);
1705 if (use_declaring_class) {
1706 LoadWordDisp(check_class,
1707 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1708 check_class);
1709 } else {
1710 LoadWordDisp(check_class,
1711 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1712 check_class);
1713 LoadWordDisp(check_class, offset_of_type, check_class);
1714 }
1715 }
1716
1717 // Compare the computed class to the class in the object.
1718 DCHECK_EQ(object.location, kLocPhysReg);
1719 OpRegMem(kOpCmp, check_class, object.low_reg,
1720 mirror::Object::ClassOffset().Int32Value());
1721
1722 // Set the low byte of the result to 0 or 1 from the compare condition code.
1723 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1724
1725 LIR* target = NewLIR0(kPseudoTargetLabel);
1726 null_branchover->target = target;
1727 FreeTemp(check_class);
1728 if (IsTemp(result_reg)) {
1729 OpRegCopy(rl_result.low_reg, result_reg);
1730 FreeTemp(result_reg);
1731 }
1732 StoreValue(rl_dest, rl_result);
1733}
1734
Mark Mendell6607d972014-02-10 06:54:18 -08001735void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1736 bool type_known_abstract, bool use_declaring_class,
1737 bool can_assume_type_is_in_dex_cache,
1738 uint32_t type_idx, RegLocation rl_dest,
1739 RegLocation rl_src) {
1740 FlushAllRegs();
1741 // May generate a call - use explicit registers.
1742 LockCallTemps();
1743 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1744 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1745 // Reference must end up in kArg0.
1746 if (needs_access_check) {
1747 // Check we have access to type_idx and if not throw IllegalAccessError,
1748 // Caller function returns Class* in kArg0.
1749 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1750 type_idx, true);
1751 OpRegCopy(class_reg, TargetReg(kRet0));
1752 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1753 } else if (use_declaring_class) {
1754 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1755 LoadWordDisp(TargetReg(kArg1),
1756 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1757 } else {
1758 // Load dex cache entry into class_reg (kArg2).
1759 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1760 LoadWordDisp(TargetReg(kArg1),
1761 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1762 int32_t offset_of_type =
1763 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1764 * type_idx);
1765 LoadWordDisp(class_reg, offset_of_type, class_reg);
1766 if (!can_assume_type_is_in_dex_cache) {
1767 // Need to test presence of type in dex cache at runtime.
1768 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1769 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1770 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1771 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1772 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1773 // Rejoin code paths
1774 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1775 hop_branch->target = hop_target;
1776 }
1777 }
1778 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1779 RegLocation rl_result = GetReturn(false);
1780
1781 // SETcc only works with EAX..EDX.
1782 DCHECK_LT(rl_result.low_reg, 4);
1783
1784 // Is the class NULL?
1785 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1786
1787 /* Load object->klass_. */
1788 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1789 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1790 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1791 LIR* branchover = nullptr;
1792 if (type_known_final) {
1793 // Ensure top 3 bytes of result are 0.
1794 LoadConstant(rl_result.low_reg, 0);
1795 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1796 // Set the low byte of the result to 0 or 1 from the compare condition code.
1797 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1798 } else {
1799 if (!type_known_abstract) {
1800 LoadConstant(rl_result.low_reg, 1); // Assume result succeeds.
1801 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1802 }
1803 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1804 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1805 }
1806 // TODO: only clobber when type isn't final?
1807 ClobberCallerSave();
1808 /* Branch targets here. */
1809 LIR* target = NewLIR0(kPseudoTargetLabel);
1810 StoreValue(rl_dest, rl_result);
1811 branch1->target = target;
1812 if (branchover != nullptr) {
1813 branchover->target = target;
1814 }
1815}
1816
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001817void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1818 RegLocation rl_lhs, RegLocation rl_rhs) {
1819 OpKind op = kOpBkpt;
1820 bool is_div_rem = false;
1821 bool unary = false;
1822 bool shift_op = false;
1823 bool is_two_addr = false;
1824 RegLocation rl_result;
1825 switch (opcode) {
1826 case Instruction::NEG_INT:
1827 op = kOpNeg;
1828 unary = true;
1829 break;
1830 case Instruction::NOT_INT:
1831 op = kOpMvn;
1832 unary = true;
1833 break;
1834 case Instruction::ADD_INT_2ADDR:
1835 is_two_addr = true;
1836 // Fallthrough
1837 case Instruction::ADD_INT:
1838 op = kOpAdd;
1839 break;
1840 case Instruction::SUB_INT_2ADDR:
1841 is_two_addr = true;
1842 // Fallthrough
1843 case Instruction::SUB_INT:
1844 op = kOpSub;
1845 break;
1846 case Instruction::MUL_INT_2ADDR:
1847 is_two_addr = true;
1848 // Fallthrough
1849 case Instruction::MUL_INT:
1850 op = kOpMul;
1851 break;
1852 case Instruction::DIV_INT_2ADDR:
1853 is_two_addr = true;
1854 // Fallthrough
1855 case Instruction::DIV_INT:
1856 op = kOpDiv;
1857 is_div_rem = true;
1858 break;
1859 /* NOTE: returns in kArg1 */
1860 case Instruction::REM_INT_2ADDR:
1861 is_two_addr = true;
1862 // Fallthrough
1863 case Instruction::REM_INT:
1864 op = kOpRem;
1865 is_div_rem = true;
1866 break;
1867 case Instruction::AND_INT_2ADDR:
1868 is_two_addr = true;
1869 // Fallthrough
1870 case Instruction::AND_INT:
1871 op = kOpAnd;
1872 break;
1873 case Instruction::OR_INT_2ADDR:
1874 is_two_addr = true;
1875 // Fallthrough
1876 case Instruction::OR_INT:
1877 op = kOpOr;
1878 break;
1879 case Instruction::XOR_INT_2ADDR:
1880 is_two_addr = true;
1881 // Fallthrough
1882 case Instruction::XOR_INT:
1883 op = kOpXor;
1884 break;
1885 case Instruction::SHL_INT_2ADDR:
1886 is_two_addr = true;
1887 // Fallthrough
1888 case Instruction::SHL_INT:
1889 shift_op = true;
1890 op = kOpLsl;
1891 break;
1892 case Instruction::SHR_INT_2ADDR:
1893 is_two_addr = true;
1894 // Fallthrough
1895 case Instruction::SHR_INT:
1896 shift_op = true;
1897 op = kOpAsr;
1898 break;
1899 case Instruction::USHR_INT_2ADDR:
1900 is_two_addr = true;
1901 // Fallthrough
1902 case Instruction::USHR_INT:
1903 shift_op = true;
1904 op = kOpLsr;
1905 break;
1906 default:
1907 LOG(FATAL) << "Invalid word arith op: " << opcode;
1908 }
1909
1910 // Can we convert to a two address instruction?
1911 if (!is_two_addr &&
1912 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1913 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1914 is_two_addr = true;
1915 }
1916
1917 // Get the div/rem stuff out of the way.
1918 if (is_div_rem) {
1919 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1920 StoreValue(rl_dest, rl_result);
1921 return;
1922 }
1923
1924 if (unary) {
1925 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1926 rl_result = UpdateLoc(rl_dest);
1927 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1928 OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1929 } else {
1930 if (shift_op) {
1931 // X86 doesn't require masking and must use ECX.
1932 int t_reg = TargetReg(kCount); // rCX
1933 LoadValueDirectFixed(rl_rhs, t_reg);
1934 if (is_two_addr) {
1935 // Can we do this directly into memory?
1936 rl_result = UpdateLoc(rl_dest);
1937 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1938 if (rl_result.location != kLocPhysReg) {
1939 // Okay, we can do this into memory
1940 OpMemReg(op, rl_result, t_reg);
1941 FreeTemp(t_reg);
1942 return;
1943 } else if (!IsFpReg(rl_result.low_reg)) {
1944 // Can do this directly into the result register
1945 OpRegReg(op, rl_result.low_reg, t_reg);
1946 FreeTemp(t_reg);
1947 StoreFinalValue(rl_dest, rl_result);
1948 return;
1949 }
1950 }
1951 // Three address form, or we can't do directly.
1952 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1953 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1954 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1955 FreeTemp(t_reg);
1956 } else {
1957 // Multiply is 3 operand only (sort of).
1958 if (is_two_addr && op != kOpMul) {
1959 // Can we do this directly into memory?
1960 rl_result = UpdateLoc(rl_dest);
1961 if (rl_result.location == kLocPhysReg) {
1962 // Can we do this from memory directly?
1963 rl_rhs = UpdateLoc(rl_rhs);
1964 if (rl_rhs.location != kLocPhysReg) {
1965 OpRegMem(op, rl_result.low_reg, rl_rhs);
1966 StoreFinalValue(rl_dest, rl_result);
1967 return;
1968 } else if (!IsFpReg(rl_rhs.low_reg)) {
1969 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1970 StoreFinalValue(rl_dest, rl_result);
1971 return;
1972 }
1973 }
1974 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1975 if (rl_result.location != kLocPhysReg) {
1976 // Okay, we can do this into memory.
1977 OpMemReg(op, rl_result, rl_rhs.low_reg);
1978 return;
1979 } else if (!IsFpReg(rl_result.low_reg)) {
1980 // Can do this directly into the result register.
1981 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
1982 StoreFinalValue(rl_dest, rl_result);
1983 return;
1984 } else {
1985 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1986 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1987 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
1988 }
1989 } else {
1990 // Try to use reg/memory instructions.
1991 rl_lhs = UpdateLoc(rl_lhs);
1992 rl_rhs = UpdateLoc(rl_rhs);
1993 // We can't optimize with FP registers.
1994 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
1995 // Something is difficult, so fall back to the standard case.
1996 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1997 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1998 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1999 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2000 } else {
2001 // We can optimize by moving to result and using memory operands.
2002 if (rl_rhs.location != kLocPhysReg) {
2003 // Force LHS into result.
2004 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2005 LoadValueDirect(rl_lhs, rl_result.low_reg);
2006 OpRegMem(op, rl_result.low_reg, rl_rhs);
2007 } else if (rl_lhs.location != kLocPhysReg) {
2008 // RHS is in a register; LHS is in memory.
2009 if (op != kOpSub) {
2010 // Force RHS into result and operate on memory.
2011 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2012 OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2013 OpRegMem(op, rl_result.low_reg, rl_lhs);
2014 } else {
2015 // Subtraction isn't commutative.
2016 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2017 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2018 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2019 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2020 }
2021 } else {
2022 // Both are in registers.
2023 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2024 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2025 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2026 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2027 }
2028 }
2029 }
2030 }
2031 }
2032 StoreValue(rl_dest, rl_result);
2033}
2034
2035bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2036 // If we have non-core registers, then we can't do good things.
2037 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2038 return false;
2039 }
2040 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2041 return false;
2042 }
2043
2044 // Everything will be fine :-).
2045 return true;
2046}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002047} // namespace art