The Android Open Source Project | 1dc9e47 | 2009-03-03 19:28:35 -0800 | [diff] [blame] | 1 | /*- |
| 2 | * Copyright (c) 1992, 1993 |
| 3 | * The Regents of the University of California. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. All advertising materials mentioning features or use of this software |
| 14 | * must display the following acknowledgement: |
| 15 | * This product includes software developed by the University of |
| 16 | * California, Berkeley and its contributors. |
| 17 | * 4. Neither the name of the University nor the names of its contributors |
| 18 | * may be used to endorse or promote products derived from this software |
| 19 | * without specific prior written permission. |
| 20 | * |
| 21 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 22 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 23 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 24 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 25 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 26 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 27 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 28 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 29 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 30 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 31 | * SUCH DAMAGE. |
| 32 | */ |
| 33 | |
| 34 | #ifndef lint |
| 35 | static char sccsid[] = "@(#)gamma.c 8.1 (Berkeley) 6/4/93"; |
| 36 | #endif /* not lint */ |
| 37 | #include <sys/cdefs.h> |
| 38 | /* __FBSDID("$FreeBSD: src/lib/msun/bsdsrc/b_tgamma.c,v 1.7 2005/09/19 11:28:19 bde Exp $"); */ |
| 39 | |
| 40 | /* |
| 41 | * This code by P. McIlroy, Oct 1992; |
| 42 | * |
| 43 | * The financial support of UUNET Communications Services is greatfully |
| 44 | * acknowledged. |
| 45 | */ |
| 46 | |
| 47 | //#include <math.h> |
| 48 | #include "../include/math.h" |
| 49 | #include "mathimpl.h" |
| 50 | #include <errno.h> |
| 51 | |
| 52 | /* METHOD: |
| 53 | * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x)) |
| 54 | * At negative integers, return +Inf, and set errno. |
| 55 | * |
| 56 | * x < 6.5: |
| 57 | * Use argument reduction G(x+1) = xG(x) to reach the |
| 58 | * range [1.066124,2.066124]. Use a rational |
| 59 | * approximation centered at the minimum (x0+1) to |
| 60 | * ensure monotonicity. |
| 61 | * |
| 62 | * x >= 6.5: Use the asymptotic approximation (Stirling's formula) |
| 63 | * adjusted for equal-ripples: |
| 64 | * |
| 65 | * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x)) |
| 66 | * |
| 67 | * Keep extra precision in multiplying (x-.5)(log(x)-1), to |
| 68 | * avoid premature round-off. |
| 69 | * |
| 70 | * Special values: |
| 71 | * non-positive integer: Set overflow trap; return +Inf; |
| 72 | * x > 171.63: Set overflow trap; return +Inf; |
| 73 | * NaN: Set invalid trap; return NaN |
| 74 | * |
| 75 | * Accuracy: Gamma(x) is accurate to within |
| 76 | * x > 0: error provably < 0.9ulp. |
| 77 | * Maximum observed in 1,000,000 trials was .87ulp. |
| 78 | * x < 0: |
| 79 | * Maximum observed error < 4ulp in 1,000,000 trials. |
| 80 | */ |
| 81 | |
| 82 | static double neg_gam(double); |
| 83 | static double small_gam(double); |
| 84 | static double smaller_gam(double); |
| 85 | static struct Double large_gam(double); |
| 86 | static struct Double ratfun_gam(double, double); |
| 87 | |
| 88 | /* |
| 89 | * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval |
| 90 | * [1.066.., 2.066..] accurate to 4.25e-19. |
| 91 | */ |
| 92 | #define LEFT -.3955078125 /* left boundary for rat. approx */ |
| 93 | #define x0 .461632144968362356785 /* xmin - 1 */ |
| 94 | |
| 95 | #define a0_hi 0.88560319441088874992 |
| 96 | #define a0_lo -.00000000000000004996427036469019695 |
| 97 | #define P0 6.21389571821820863029017800727e-01 |
| 98 | #define P1 2.65757198651533466104979197553e-01 |
| 99 | #define P2 5.53859446429917461063308081748e-03 |
| 100 | #define P3 1.38456698304096573887145282811e-03 |
| 101 | #define P4 2.40659950032711365819348969808e-03 |
| 102 | #define Q0 1.45019531250000000000000000000e+00 |
| 103 | #define Q1 1.06258521948016171343454061571e+00 |
| 104 | #define Q2 -2.07474561943859936441469926649e-01 |
| 105 | #define Q3 -1.46734131782005422506287573015e-01 |
| 106 | #define Q4 3.07878176156175520361557573779e-02 |
| 107 | #define Q5 5.12449347980666221336054633184e-03 |
| 108 | #define Q6 -1.76012741431666995019222898833e-03 |
| 109 | #define Q7 9.35021023573788935372153030556e-05 |
| 110 | #define Q8 6.13275507472443958924745652239e-06 |
| 111 | /* |
| 112 | * Constants for large x approximation (x in [6, Inf]) |
| 113 | * (Accurate to 2.8*10^-19 absolute) |
| 114 | */ |
| 115 | #define lns2pi_hi 0.418945312500000 |
| 116 | #define lns2pi_lo -.000006779295327258219670263595 |
| 117 | #define Pa0 8.33333333333333148296162562474e-02 |
| 118 | #define Pa1 -2.77777777774548123579378966497e-03 |
| 119 | #define Pa2 7.93650778754435631476282786423e-04 |
| 120 | #define Pa3 -5.95235082566672847950717262222e-04 |
| 121 | #define Pa4 8.41428560346653702135821806252e-04 |
| 122 | #define Pa5 -1.89773526463879200348872089421e-03 |
| 123 | #define Pa6 5.69394463439411649408050664078e-03 |
| 124 | #define Pa7 -1.44705562421428915453880392761e-02 |
| 125 | |
| 126 | static const double zero = 0., one = 1.0, tiny = 1e-300; |
| 127 | |
| 128 | double |
| 129 | tgamma(x) |
| 130 | double x; |
| 131 | { |
| 132 | struct Double u; |
| 133 | |
| 134 | if (x >= 6) { |
| 135 | if(x > 171.63) |
| 136 | return(one/zero); |
| 137 | u = large_gam(x); |
| 138 | return(__exp__D(u.a, u.b)); |
| 139 | } else if (x >= 1.0 + LEFT + x0) |
| 140 | return (small_gam(x)); |
| 141 | else if (x > 1.e-17) |
| 142 | return (smaller_gam(x)); |
| 143 | else if (x > -1.e-17) { |
| 144 | if (x == 0.0) |
| 145 | return (one/x); |
| 146 | one+1e-20; /* Raise inexact flag. */ |
| 147 | return (one/x); |
| 148 | } else if (!finite(x)) |
| 149 | return (x*x); /* x = NaN, -Inf */ |
| 150 | else |
| 151 | return (neg_gam(x)); |
| 152 | } |
| 153 | /* |
| 154 | * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error. |
| 155 | */ |
| 156 | static struct Double |
| 157 | large_gam(x) |
| 158 | double x; |
| 159 | { |
| 160 | double z, p; |
| 161 | struct Double t, u, v; |
| 162 | |
| 163 | z = one/(x*x); |
| 164 | p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7)))))); |
| 165 | p = p/x; |
| 166 | |
| 167 | u = __log__D(x); |
| 168 | u.a -= one; |
| 169 | v.a = (x -= .5); |
| 170 | TRUNC(v.a); |
| 171 | v.b = x - v.a; |
| 172 | t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */ |
| 173 | t.b = v.b*u.a + x*u.b; |
| 174 | /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */ |
| 175 | t.b += lns2pi_lo; t.b += p; |
| 176 | u.a = lns2pi_hi + t.b; u.a += t.a; |
| 177 | u.b = t.a - u.a; |
| 178 | u.b += lns2pi_hi; u.b += t.b; |
| 179 | return (u); |
| 180 | } |
| 181 | /* |
| 182 | * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.) |
| 183 | * It also has correct monotonicity. |
| 184 | */ |
| 185 | static double |
| 186 | small_gam(x) |
| 187 | double x; |
| 188 | { |
| 189 | double y, ym1, t; |
| 190 | struct Double yy, r; |
| 191 | y = x - one; |
| 192 | ym1 = y - one; |
| 193 | if (y <= 1.0 + (LEFT + x0)) { |
| 194 | yy = ratfun_gam(y - x0, 0); |
| 195 | return (yy.a + yy.b); |
| 196 | } |
| 197 | r.a = y; |
| 198 | TRUNC(r.a); |
| 199 | yy.a = r.a - one; |
| 200 | y = ym1; |
| 201 | yy.b = r.b = y - yy.a; |
| 202 | /* Argument reduction: G(x+1) = x*G(x) */ |
| 203 | for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) { |
| 204 | t = r.a*yy.a; |
| 205 | r.b = r.a*yy.b + y*r.b; |
| 206 | r.a = t; |
| 207 | TRUNC(r.a); |
| 208 | r.b += (t - r.a); |
| 209 | } |
| 210 | /* Return r*tgamma(y). */ |
| 211 | yy = ratfun_gam(y - x0, 0); |
| 212 | y = r.b*(yy.a + yy.b) + r.a*yy.b; |
| 213 | y += yy.a*r.a; |
| 214 | return (y); |
| 215 | } |
| 216 | /* |
| 217 | * Good on (0, 1+x0+LEFT]. Accurate to 1ulp. |
| 218 | */ |
| 219 | static double |
| 220 | smaller_gam(x) |
| 221 | double x; |
| 222 | { |
| 223 | double t, d; |
| 224 | struct Double r, xx; |
| 225 | if (x < x0 + LEFT) { |
| 226 | t = x, TRUNC(t); |
| 227 | d = (t+x)*(x-t); |
| 228 | t *= t; |
| 229 | xx.a = (t + x), TRUNC(xx.a); |
| 230 | xx.b = x - xx.a; xx.b += t; xx.b += d; |
| 231 | t = (one-x0); t += x; |
| 232 | d = (one-x0); d -= t; d += x; |
| 233 | x = xx.a + xx.b; |
| 234 | } else { |
| 235 | xx.a = x, TRUNC(xx.a); |
| 236 | xx.b = x - xx.a; |
| 237 | t = x - x0; |
| 238 | d = (-x0 -t); d += x; |
| 239 | } |
| 240 | r = ratfun_gam(t, d); |
| 241 | d = r.a/x, TRUNC(d); |
| 242 | r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b; |
| 243 | return (d + r.a/x); |
| 244 | } |
| 245 | /* |
| 246 | * returns (z+c)^2 * P(z)/Q(z) + a0 |
| 247 | */ |
| 248 | static struct Double |
| 249 | ratfun_gam(z, c) |
| 250 | double z, c; |
| 251 | { |
| 252 | double p, q; |
| 253 | struct Double r, t; |
| 254 | |
| 255 | q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8))))))); |
| 256 | p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4))); |
| 257 | |
| 258 | /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */ |
| 259 | p = p/q; |
| 260 | t.a = z, TRUNC(t.a); /* t ~= z + c */ |
| 261 | t.b = (z - t.a) + c; |
| 262 | t.b *= (t.a + z); |
| 263 | q = (t.a *= t.a); /* t = (z+c)^2 */ |
| 264 | TRUNC(t.a); |
| 265 | t.b += (q - t.a); |
| 266 | r.a = p, TRUNC(r.a); /* r = P/Q */ |
| 267 | r.b = p - r.a; |
| 268 | t.b = t.b*p + t.a*r.b + a0_lo; |
| 269 | t.a *= r.a; /* t = (z+c)^2*(P/Q) */ |
| 270 | r.a = t.a + a0_hi, TRUNC(r.a); |
| 271 | r.b = ((a0_hi-r.a) + t.a) + t.b; |
| 272 | return (r); /* r = a0 + t */ |
| 273 | } |
| 274 | |
| 275 | static double |
| 276 | neg_gam(x) |
| 277 | double x; |
| 278 | { |
| 279 | int sgn = 1; |
| 280 | struct Double lg, lsine; |
| 281 | double y, z; |
| 282 | |
| 283 | y = floor(x + .5); |
| 284 | if (y == x) /* Negative integer. */ |
| 285 | return (one/zero); |
| 286 | z = fabs(x - y); |
| 287 | y = .5*ceil(x); |
| 288 | if (y == ceil(y)) |
| 289 | sgn = -1; |
| 290 | if (z < .25) |
| 291 | z = sin(M_PI*z); |
| 292 | else |
| 293 | z = cos(M_PI*(0.5-z)); |
| 294 | /* Special case: G(1-x) = Inf; G(x) may be nonzero. */ |
| 295 | if (x < -170) { |
| 296 | if (x < -190) |
| 297 | return ((double)sgn*tiny*tiny); |
| 298 | y = one - x; /* exact: 128 < |x| < 255 */ |
| 299 | lg = large_gam(y); |
| 300 | lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */ |
| 301 | lg.a -= lsine.a; /* exact (opposite signs) */ |
| 302 | lg.b -= lsine.b; |
| 303 | y = -(lg.a + lg.b); |
| 304 | z = (y + lg.a) + lg.b; |
| 305 | y = __exp__D(y, z); |
| 306 | if (sgn < 0) y = -y; |
| 307 | return (y); |
| 308 | } |
| 309 | y = one-x; |
| 310 | if (one-y == x) |
| 311 | y = tgamma(y); |
| 312 | else /* 1-x is inexact */ |
| 313 | y = -x*tgamma(-x); |
| 314 | if (sgn < 0) y = -y; |
| 315 | return (M_PI / (y*z)); |
| 316 | } |