Jeff Brown | 8a90e6e | 2012-05-11 12:24:35 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (C) 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #define LOG_TAG "VelocityTracker" |
| 18 | //#define LOG_NDEBUG 0 |
| 19 | |
| 20 | // Log debug messages about velocity tracking. |
| 21 | #define DEBUG_VELOCITY 0 |
| 22 | |
| 23 | // Log debug messages about least squares fitting. |
| 24 | #define DEBUG_LEAST_SQUARES 0 |
| 25 | |
| 26 | #include <math.h> |
| 27 | #include <limits.h> |
| 28 | |
| 29 | #include <androidfw/VelocityTracker.h> |
| 30 | #include <utils/BitSet.h> |
| 31 | #include <utils/String8.h> |
| 32 | #include <utils/Timers.h> |
| 33 | |
| 34 | namespace android { |
| 35 | |
| 36 | // --- VelocityTracker --- |
| 37 | |
| 38 | const uint32_t VelocityTracker::DEFAULT_DEGREE; |
| 39 | const nsecs_t VelocityTracker::DEFAULT_HORIZON; |
| 40 | const uint32_t VelocityTracker::HISTORY_SIZE; |
| 41 | |
| 42 | static inline float vectorDot(const float* a, const float* b, uint32_t m) { |
| 43 | float r = 0; |
| 44 | while (m--) { |
| 45 | r += *(a++) * *(b++); |
| 46 | } |
| 47 | return r; |
| 48 | } |
| 49 | |
| 50 | static inline float vectorNorm(const float* a, uint32_t m) { |
| 51 | float r = 0; |
| 52 | while (m--) { |
| 53 | float t = *(a++); |
| 54 | r += t * t; |
| 55 | } |
| 56 | return sqrtf(r); |
| 57 | } |
| 58 | |
| 59 | #if DEBUG_LEAST_SQUARES || DEBUG_VELOCITY |
| 60 | static String8 vectorToString(const float* a, uint32_t m) { |
| 61 | String8 str; |
| 62 | str.append("["); |
| 63 | while (m--) { |
| 64 | str.appendFormat(" %f", *(a++)); |
| 65 | if (m) { |
| 66 | str.append(","); |
| 67 | } |
| 68 | } |
| 69 | str.append(" ]"); |
| 70 | return str; |
| 71 | } |
| 72 | |
| 73 | static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { |
| 74 | String8 str; |
| 75 | str.append("["); |
| 76 | for (size_t i = 0; i < m; i++) { |
| 77 | if (i) { |
| 78 | str.append(","); |
| 79 | } |
| 80 | str.append(" ["); |
| 81 | for (size_t j = 0; j < n; j++) { |
| 82 | if (j) { |
| 83 | str.append(","); |
| 84 | } |
| 85 | str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]); |
| 86 | } |
| 87 | str.append(" ]"); |
| 88 | } |
| 89 | str.append(" ]"); |
| 90 | return str; |
| 91 | } |
| 92 | #endif |
| 93 | |
| 94 | VelocityTracker::VelocityTracker() { |
| 95 | clear(); |
| 96 | } |
| 97 | |
| 98 | void VelocityTracker::clear() { |
| 99 | mIndex = 0; |
| 100 | mMovements[0].idBits.clear(); |
| 101 | mActivePointerId = -1; |
| 102 | } |
| 103 | |
| 104 | void VelocityTracker::clearPointers(BitSet32 idBits) { |
| 105 | BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value); |
| 106 | mMovements[mIndex].idBits = remainingIdBits; |
| 107 | |
| 108 | if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) { |
| 109 | mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) { |
| 114 | if (++mIndex == HISTORY_SIZE) { |
| 115 | mIndex = 0; |
| 116 | } |
| 117 | |
| 118 | while (idBits.count() > MAX_POINTERS) { |
| 119 | idBits.clearLastMarkedBit(); |
| 120 | } |
| 121 | |
| 122 | Movement& movement = mMovements[mIndex]; |
| 123 | movement.eventTime = eventTime; |
| 124 | movement.idBits = idBits; |
| 125 | uint32_t count = idBits.count(); |
| 126 | for (uint32_t i = 0; i < count; i++) { |
| 127 | movement.positions[i] = positions[i]; |
| 128 | } |
| 129 | |
| 130 | if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) { |
| 131 | mActivePointerId = count != 0 ? idBits.firstMarkedBit() : -1; |
| 132 | } |
| 133 | |
| 134 | #if DEBUG_VELOCITY |
| 135 | ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d", |
| 136 | eventTime, idBits.value, mActivePointerId); |
| 137 | for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) { |
| 138 | uint32_t id = iterBits.firstMarkedBit(); |
| 139 | uint32_t index = idBits.getIndexOfBit(id); |
| 140 | iterBits.clearBit(id); |
| 141 | Estimator estimator; |
| 142 | getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator); |
| 143 | ALOGD(" %d: position (%0.3f, %0.3f), " |
| 144 | "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)", |
| 145 | id, positions[index].x, positions[index].y, |
| 146 | int(estimator.degree), |
| 147 | vectorToString(estimator.xCoeff, estimator.degree).string(), |
| 148 | vectorToString(estimator.yCoeff, estimator.degree).string(), |
| 149 | estimator.confidence); |
| 150 | } |
| 151 | #endif |
| 152 | } |
| 153 | |
| 154 | void VelocityTracker::addMovement(const MotionEvent* event) { |
| 155 | int32_t actionMasked = event->getActionMasked(); |
| 156 | |
| 157 | switch (actionMasked) { |
| 158 | case AMOTION_EVENT_ACTION_DOWN: |
| 159 | case AMOTION_EVENT_ACTION_HOVER_ENTER: |
| 160 | // Clear all pointers on down before adding the new movement. |
| 161 | clear(); |
| 162 | break; |
| 163 | case AMOTION_EVENT_ACTION_POINTER_DOWN: { |
| 164 | // Start a new movement trace for a pointer that just went down. |
| 165 | // We do this on down instead of on up because the client may want to query the |
| 166 | // final velocity for a pointer that just went up. |
| 167 | BitSet32 downIdBits; |
| 168 | downIdBits.markBit(event->getPointerId(event->getActionIndex())); |
| 169 | clearPointers(downIdBits); |
| 170 | break; |
| 171 | } |
| 172 | case AMOTION_EVENT_ACTION_MOVE: |
| 173 | case AMOTION_EVENT_ACTION_HOVER_MOVE: |
| 174 | break; |
| 175 | default: |
| 176 | // Ignore all other actions because they do not convey any new information about |
| 177 | // pointer movement. We also want to preserve the last known velocity of the pointers. |
| 178 | // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position |
| 179 | // of the pointers that went up. ACTION_POINTER_UP does include the new position of |
| 180 | // pointers that remained down but we will also receive an ACTION_MOVE with this |
| 181 | // information if any of them actually moved. Since we don't know how many pointers |
| 182 | // will be going up at once it makes sense to just wait for the following ACTION_MOVE |
| 183 | // before adding the movement. |
| 184 | return; |
| 185 | } |
| 186 | |
| 187 | size_t pointerCount = event->getPointerCount(); |
| 188 | if (pointerCount > MAX_POINTERS) { |
| 189 | pointerCount = MAX_POINTERS; |
| 190 | } |
| 191 | |
| 192 | BitSet32 idBits; |
| 193 | for (size_t i = 0; i < pointerCount; i++) { |
| 194 | idBits.markBit(event->getPointerId(i)); |
| 195 | } |
| 196 | |
| 197 | nsecs_t eventTime; |
| 198 | Position positions[pointerCount]; |
| 199 | |
| 200 | size_t historySize = event->getHistorySize(); |
| 201 | for (size_t h = 0; h < historySize; h++) { |
| 202 | eventTime = event->getHistoricalEventTime(h); |
| 203 | for (size_t i = 0; i < pointerCount; i++) { |
| 204 | positions[i].x = event->getHistoricalX(i, h); |
| 205 | positions[i].y = event->getHistoricalY(i, h); |
| 206 | } |
| 207 | addMovement(eventTime, idBits, positions); |
| 208 | } |
| 209 | |
| 210 | eventTime = event->getEventTime(); |
| 211 | for (size_t i = 0; i < pointerCount; i++) { |
| 212 | positions[i].x = event->getX(i); |
| 213 | positions[i].y = event->getY(i); |
| 214 | } |
| 215 | addMovement(eventTime, idBits, positions); |
| 216 | } |
| 217 | |
| 218 | /** |
| 219 | * Solves a linear least squares problem to obtain a N degree polynomial that fits |
| 220 | * the specified input data as nearly as possible. |
| 221 | * |
| 222 | * Returns true if a solution is found, false otherwise. |
| 223 | * |
| 224 | * The input consists of two vectors of data points X and Y with indices 0..m-1. |
| 225 | * The output is a vector B with indices 0..n-1 that describes a polynomial |
| 226 | * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n)) |
| 227 | * for all i between 0 and m-1 is minimized. |
| 228 | * |
| 229 | * That is to say, the function that generated the input data can be approximated |
| 230 | * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. |
| 231 | * |
| 232 | * The coefficient of determination (R^2) is also returned to describe the goodness |
| 233 | * of fit of the model for the given data. It is a value between 0 and 1, where 1 |
| 234 | * indicates perfect correspondence. |
| 235 | * |
| 236 | * This function first expands the X vector to a m by n matrix A such that |
| 237 | * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n. |
| 238 | * |
| 239 | * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q |
| 240 | * and an m by n upper triangular matrix R. Because R is upper triangular (lower |
| 241 | * part is all zeroes), we can simplify the decomposition into an m by n matrix |
| 242 | * Q1 and a n by n matrix R1 such that A = Q1 R1. |
| 243 | * |
| 244 | * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y) |
| 245 | * to find B. |
| 246 | * |
| 247 | * For efficiency, we lay out A and Q column-wise in memory because we frequently |
| 248 | * operate on the column vectors. Conversely, we lay out R row-wise. |
| 249 | * |
| 250 | * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares |
| 251 | * http://en.wikipedia.org/wiki/Gram-Schmidt |
| 252 | */ |
| 253 | static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n, |
| 254 | float* outB, float* outDet) { |
| 255 | #if DEBUG_LEAST_SQUARES |
| 256 | ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n), |
| 257 | vectorToString(x, m).string(), vectorToString(y, m).string()); |
| 258 | #endif |
| 259 | |
| 260 | // Expand the X vector to a matrix A. |
| 261 | float a[n][m]; // column-major order |
| 262 | for (uint32_t h = 0; h < m; h++) { |
| 263 | a[0][h] = 1; |
| 264 | for (uint32_t i = 1; i < n; i++) { |
| 265 | a[i][h] = a[i - 1][h] * x[h]; |
| 266 | } |
| 267 | } |
| 268 | #if DEBUG_LEAST_SQUARES |
| 269 | ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string()); |
| 270 | #endif |
| 271 | |
| 272 | // Apply the Gram-Schmidt process to A to obtain its QR decomposition. |
| 273 | float q[n][m]; // orthonormal basis, column-major order |
| 274 | float r[n][n]; // upper triangular matrix, row-major order |
| 275 | for (uint32_t j = 0; j < n; j++) { |
| 276 | for (uint32_t h = 0; h < m; h++) { |
| 277 | q[j][h] = a[j][h]; |
| 278 | } |
| 279 | for (uint32_t i = 0; i < j; i++) { |
| 280 | float dot = vectorDot(&q[j][0], &q[i][0], m); |
| 281 | for (uint32_t h = 0; h < m; h++) { |
| 282 | q[j][h] -= dot * q[i][h]; |
| 283 | } |
| 284 | } |
| 285 | |
| 286 | float norm = vectorNorm(&q[j][0], m); |
| 287 | if (norm < 0.000001f) { |
| 288 | // vectors are linearly dependent or zero so no solution |
| 289 | #if DEBUG_LEAST_SQUARES |
| 290 | ALOGD(" - no solution, norm=%f", norm); |
| 291 | #endif |
| 292 | return false; |
| 293 | } |
| 294 | |
| 295 | float invNorm = 1.0f / norm; |
| 296 | for (uint32_t h = 0; h < m; h++) { |
| 297 | q[j][h] *= invNorm; |
| 298 | } |
| 299 | for (uint32_t i = 0; i < n; i++) { |
| 300 | r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); |
| 301 | } |
| 302 | } |
| 303 | #if DEBUG_LEAST_SQUARES |
| 304 | ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string()); |
| 305 | ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string()); |
| 306 | |
| 307 | // calculate QR, if we factored A correctly then QR should equal A |
| 308 | float qr[n][m]; |
| 309 | for (uint32_t h = 0; h < m; h++) { |
| 310 | for (uint32_t i = 0; i < n; i++) { |
| 311 | qr[i][h] = 0; |
| 312 | for (uint32_t j = 0; j < n; j++) { |
| 313 | qr[i][h] += q[j][h] * r[j][i]; |
| 314 | } |
| 315 | } |
| 316 | } |
| 317 | ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string()); |
| 318 | #endif |
| 319 | |
| 320 | // Solve R B = Qt Y to find B. This is easy because R is upper triangular. |
| 321 | // We just work from bottom-right to top-left calculating B's coefficients. |
| 322 | for (uint32_t i = n; i-- != 0; ) { |
| 323 | outB[i] = vectorDot(&q[i][0], y, m); |
| 324 | for (uint32_t j = n - 1; j > i; j--) { |
| 325 | outB[i] -= r[i][j] * outB[j]; |
| 326 | } |
| 327 | outB[i] /= r[i][i]; |
| 328 | } |
| 329 | #if DEBUG_LEAST_SQUARES |
| 330 | ALOGD(" - b=%s", vectorToString(outB, n).string()); |
| 331 | #endif |
| 332 | |
| 333 | // Calculate the coefficient of determination as 1 - (SSerr / SStot) where |
| 334 | // SSerr is the residual sum of squares (squared variance of the error), |
| 335 | // and SStot is the total sum of squares (squared variance of the data). |
| 336 | float ymean = 0; |
| 337 | for (uint32_t h = 0; h < m; h++) { |
| 338 | ymean += y[h]; |
| 339 | } |
| 340 | ymean /= m; |
| 341 | |
| 342 | float sserr = 0; |
| 343 | float sstot = 0; |
| 344 | for (uint32_t h = 0; h < m; h++) { |
| 345 | float err = y[h] - outB[0]; |
| 346 | float term = 1; |
| 347 | for (uint32_t i = 1; i < n; i++) { |
| 348 | term *= x[h]; |
| 349 | err -= term * outB[i]; |
| 350 | } |
| 351 | sserr += err * err; |
| 352 | float var = y[h] - ymean; |
| 353 | sstot += var * var; |
| 354 | } |
| 355 | *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1; |
| 356 | #if DEBUG_LEAST_SQUARES |
| 357 | ALOGD(" - sserr=%f", sserr); |
| 358 | ALOGD(" - sstot=%f", sstot); |
| 359 | ALOGD(" - det=%f", *outDet); |
| 360 | #endif |
| 361 | return true; |
| 362 | } |
| 363 | |
| 364 | bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const { |
| 365 | Estimator estimator; |
| 366 | if (getEstimator(id, DEFAULT_DEGREE, DEFAULT_HORIZON, &estimator)) { |
| 367 | if (estimator.degree >= 1) { |
| 368 | *outVx = estimator.xCoeff[1]; |
| 369 | *outVy = estimator.yCoeff[1]; |
| 370 | return true; |
| 371 | } |
| 372 | } |
| 373 | *outVx = 0; |
| 374 | *outVy = 0; |
| 375 | return false; |
| 376 | } |
| 377 | |
| 378 | bool VelocityTracker::getEstimator(uint32_t id, uint32_t degree, nsecs_t horizon, |
| 379 | Estimator* outEstimator) const { |
| 380 | outEstimator->clear(); |
| 381 | |
| 382 | // Iterate over movement samples in reverse time order and collect samples. |
| 383 | float x[HISTORY_SIZE]; |
| 384 | float y[HISTORY_SIZE]; |
| 385 | float time[HISTORY_SIZE]; |
| 386 | uint32_t m = 0; |
| 387 | uint32_t index = mIndex; |
| 388 | const Movement& newestMovement = mMovements[mIndex]; |
| 389 | do { |
| 390 | const Movement& movement = mMovements[index]; |
| 391 | if (!movement.idBits.hasBit(id)) { |
| 392 | break; |
| 393 | } |
| 394 | |
| 395 | nsecs_t age = newestMovement.eventTime - movement.eventTime; |
| 396 | if (age > horizon) { |
| 397 | break; |
| 398 | } |
| 399 | |
| 400 | const Position& position = movement.getPosition(id); |
| 401 | x[m] = position.x; |
| 402 | y[m] = position.y; |
| 403 | time[m] = -age * 0.000000001f; |
| 404 | index = (index == 0 ? HISTORY_SIZE : index) - 1; |
| 405 | } while (++m < HISTORY_SIZE); |
| 406 | |
| 407 | if (m == 0) { |
| 408 | return false; // no data |
| 409 | } |
| 410 | |
| 411 | // Calculate a least squares polynomial fit. |
| 412 | if (degree > Estimator::MAX_DEGREE) { |
| 413 | degree = Estimator::MAX_DEGREE; |
| 414 | } |
| 415 | if (degree > m - 1) { |
| 416 | degree = m - 1; |
| 417 | } |
| 418 | if (degree >= 1) { |
| 419 | float xdet, ydet; |
| 420 | uint32_t n = degree + 1; |
| 421 | if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet) |
| 422 | && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) { |
| 423 | outEstimator->degree = degree; |
| 424 | outEstimator->confidence = xdet * ydet; |
| 425 | #if DEBUG_LEAST_SQUARES |
| 426 | ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f", |
| 427 | int(outEstimator->degree), |
| 428 | vectorToString(outEstimator->xCoeff, n).string(), |
| 429 | vectorToString(outEstimator->yCoeff, n).string(), |
| 430 | outEstimator->confidence); |
| 431 | #endif |
| 432 | return true; |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | // No velocity data available for this pointer, but we do have its current position. |
| 437 | outEstimator->xCoeff[0] = x[0]; |
| 438 | outEstimator->yCoeff[0] = y[0]; |
| 439 | outEstimator->degree = 0; |
| 440 | outEstimator->confidence = 1; |
| 441 | return true; |
| 442 | } |
| 443 | |
| 444 | } // namespace android |