blob: ccf515457b8b9bfede1ebd4d95ac3d42303a2c4e [file] [log] [blame]
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -07001/*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "concurrent_copying.h"
18
Mathieu Chartierc7853442015-03-27 14:35:38 -070019#include "art_field-inl.h"
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080020#include "gc/accounting/heap_bitmap-inl.h"
21#include "gc/accounting/space_bitmap-inl.h"
Mathieu Chartier3cf22532015-07-09 15:15:09 -070022#include "gc/reference_processor.h"
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080023#include "gc/space/image_space.h"
24#include "gc/space/space.h"
25#include "intern_table.h"
Mathieu Chartiere401d142015-04-22 13:56:20 -070026#include "mirror/class-inl.h"
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080027#include "mirror/object-inl.h"
28#include "scoped_thread_state_change.h"
29#include "thread-inl.h"
30#include "thread_list.h"
31#include "well_known_classes.h"
32
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -070033namespace art {
34namespace gc {
35namespace collector {
36
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080037ConcurrentCopying::ConcurrentCopying(Heap* heap, const std::string& name_prefix)
38 : GarbageCollector(heap,
39 name_prefix + (name_prefix.empty() ? "" : " ") +
40 "concurrent copying + mark sweep"),
41 region_space_(nullptr), gc_barrier_(new Barrier(0)), mark_queue_(2 * MB),
42 is_marking_(false), is_active_(false), is_asserting_to_space_invariant_(false),
43 heap_mark_bitmap_(nullptr), live_stack_freeze_size_(0),
44 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
45 rb_table_(heap_->GetReadBarrierTable()),
46 force_evacuate_all_(false) {
47 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
48 "The region space size and the read barrier table region size must match");
49 cc_heap_bitmap_.reset(new accounting::HeapBitmap(heap));
50 {
51 Thread* self = Thread::Current();
52 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
53 // Cache this so that we won't have to lock heap_bitmap_lock_ in
54 // Mark() which could cause a nested lock on heap_bitmap_lock_
55 // when GC causes a RB while doing GC or a lock order violation
56 // (class_linker_lock_ and heap_bitmap_lock_).
57 heap_mark_bitmap_ = heap->GetMarkBitmap();
58 }
59}
60
61ConcurrentCopying::~ConcurrentCopying() {
62}
63
64void ConcurrentCopying::RunPhases() {
65 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
66 CHECK(!is_active_);
67 is_active_ = true;
68 Thread* self = Thread::Current();
69 Locks::mutator_lock_->AssertNotHeld(self);
70 {
71 ReaderMutexLock mu(self, *Locks::mutator_lock_);
72 InitializePhase();
73 }
74 FlipThreadRoots();
75 {
76 ReaderMutexLock mu(self, *Locks::mutator_lock_);
77 MarkingPhase();
78 }
79 // Verify no from space refs. This causes a pause.
80 if (kEnableNoFromSpaceRefsVerification || kIsDebugBuild) {
81 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
82 ScopedPause pause(this);
83 CheckEmptyMarkQueue();
84 if (kVerboseMode) {
85 LOG(INFO) << "Verifying no from-space refs";
86 }
87 VerifyNoFromSpaceReferences();
Mathieu Chartier720e71a2015-04-06 17:10:58 -070088 if (kVerboseMode) {
89 LOG(INFO) << "Done verifying no from-space refs";
90 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -080091 CheckEmptyMarkQueue();
92 }
93 {
94 ReaderMutexLock mu(self, *Locks::mutator_lock_);
95 ReclaimPhase();
96 }
97 FinishPhase();
98 CHECK(is_active_);
99 is_active_ = false;
100}
101
102void ConcurrentCopying::BindBitmaps() {
103 Thread* self = Thread::Current();
104 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
105 // Mark all of the spaces we never collect as immune.
106 for (const auto& space : heap_->GetContinuousSpaces()) {
107 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect
108 || space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
109 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
110 CHECK(immune_region_.AddContinuousSpace(space)) << "Failed to add space " << *space;
111 const char* bitmap_name = space->IsImageSpace() ? "cc image space bitmap" :
112 "cc zygote space bitmap";
113 // TODO: try avoiding using bitmaps for image/zygote to save space.
114 accounting::ContinuousSpaceBitmap* bitmap =
115 accounting::ContinuousSpaceBitmap::Create(bitmap_name, space->Begin(), space->Capacity());
116 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
117 cc_bitmaps_.push_back(bitmap);
118 } else if (space == region_space_) {
119 accounting::ContinuousSpaceBitmap* bitmap =
120 accounting::ContinuousSpaceBitmap::Create("cc region space bitmap",
121 space->Begin(), space->Capacity());
122 cc_heap_bitmap_->AddContinuousSpaceBitmap(bitmap);
123 cc_bitmaps_.push_back(bitmap);
124 region_space_bitmap_ = bitmap;
125 }
126 }
127}
128
129void ConcurrentCopying::InitializePhase() {
130 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
131 if (kVerboseMode) {
132 LOG(INFO) << "GC InitializePhase";
133 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
134 << reinterpret_cast<void*>(region_space_->Limit());
135 }
136 CHECK(mark_queue_.IsEmpty());
137 immune_region_.Reset();
138 bytes_moved_.StoreRelaxed(0);
139 objects_moved_.StoreRelaxed(0);
140 if (GetCurrentIteration()->GetGcCause() == kGcCauseExplicit ||
141 GetCurrentIteration()->GetGcCause() == kGcCauseForNativeAlloc ||
142 GetCurrentIteration()->GetClearSoftReferences()) {
143 force_evacuate_all_ = true;
144 } else {
145 force_evacuate_all_ = false;
146 }
147 BindBitmaps();
148 if (kVerboseMode) {
149 LOG(INFO) << "force_evacuate_all=" << force_evacuate_all_;
150 LOG(INFO) << "Immune region: " << immune_region_.Begin() << "-" << immune_region_.End();
151 LOG(INFO) << "GC end of InitializePhase";
152 }
153}
154
155// Used to switch the thread roots of a thread from from-space refs to to-space refs.
156class ThreadFlipVisitor : public Closure {
157 public:
158 explicit ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
159 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
160 }
161
162 virtual void Run(Thread* thread) OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
163 // Note: self is not necessarily equal to thread since thread may be suspended.
164 Thread* self = Thread::Current();
165 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
166 << thread->GetState() << " thread " << thread << " self " << self;
167 if (use_tlab_ && thread->HasTlab()) {
168 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
169 // This must come before the revoke.
170 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
171 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
172 reinterpret_cast<Atomic<size_t>*>(&concurrent_copying_->from_space_num_objects_at_first_pause_)->
173 FetchAndAddSequentiallyConsistent(thread_local_objects);
174 } else {
175 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread);
176 }
177 }
178 if (kUseThreadLocalAllocationStack) {
179 thread->RevokeThreadLocalAllocationStack();
180 }
181 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700182 thread->VisitRoots(concurrent_copying_);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800183 concurrent_copying_->GetBarrier().Pass(self);
184 }
185
186 private:
187 ConcurrentCopying* const concurrent_copying_;
188 const bool use_tlab_;
189};
190
191// Called back from Runtime::FlipThreadRoots() during a pause.
192class FlipCallback : public Closure {
193 public:
194 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
195 : concurrent_copying_(concurrent_copying) {
196 }
197
198 virtual void Run(Thread* thread) OVERRIDE EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_) {
199 ConcurrentCopying* cc = concurrent_copying_;
200 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
201 // Note: self is not necessarily equal to thread since thread may be suspended.
202 Thread* self = Thread::Current();
203 CHECK(thread == self);
204 Locks::mutator_lock_->AssertExclusiveHeld(self);
205 cc->region_space_->SetFromSpace(cc->rb_table_, cc->force_evacuate_all_);
206 cc->SwapStacks(self);
207 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
208 cc->RecordLiveStackFreezeSize(self);
209 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
210 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
211 }
212 cc->is_marking_ = true;
213 if (UNLIKELY(Runtime::Current()->IsActiveTransaction())) {
Mathieu Chartier184c9dc2015-03-05 13:20:54 -0800214 CHECK(Runtime::Current()->IsAotCompiler());
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800215 TimingLogger::ScopedTiming split2("(Paused)VisitTransactionRoots", cc->GetTimings());
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700216 Runtime::Current()->VisitTransactionRoots(cc);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800217 }
218 }
219
220 private:
221 ConcurrentCopying* const concurrent_copying_;
222};
223
224// Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
225void ConcurrentCopying::FlipThreadRoots() {
226 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
227 if (kVerboseMode) {
228 LOG(INFO) << "time=" << region_space_->Time();
229 region_space_->DumpNonFreeRegions(LOG(INFO));
230 }
231 Thread* self = Thread::Current();
232 Locks::mutator_lock_->AssertNotHeld(self);
233 gc_barrier_->Init(self, 0);
234 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
235 FlipCallback flip_callback(this);
236 size_t barrier_count = Runtime::Current()->FlipThreadRoots(
237 &thread_flip_visitor, &flip_callback, this);
238 {
239 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
240 gc_barrier_->Increment(self, barrier_count);
241 }
242 is_asserting_to_space_invariant_ = true;
243 QuasiAtomic::ThreadFenceForConstructor();
244 if (kVerboseMode) {
245 LOG(INFO) << "time=" << region_space_->Time();
246 region_space_->DumpNonFreeRegions(LOG(INFO));
247 LOG(INFO) << "GC end of FlipThreadRoots";
248 }
249}
250
251void ConcurrentCopying::SwapStacks(Thread* self) {
252 heap_->SwapStacks(self);
253}
254
255void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
256 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
257 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
258}
259
260// Used to visit objects in the immune spaces.
261class ConcurrentCopyingImmuneSpaceObjVisitor {
262 public:
263 explicit ConcurrentCopyingImmuneSpaceObjVisitor(ConcurrentCopying* cc)
264 : collector_(cc) {}
265
266 void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
267 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
268 DCHECK(obj != nullptr);
269 DCHECK(collector_->immune_region_.ContainsObject(obj));
270 accounting::ContinuousSpaceBitmap* cc_bitmap =
271 collector_->cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
272 DCHECK(cc_bitmap != nullptr)
273 << "An immune space object must have a bitmap";
274 if (kIsDebugBuild) {
275 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj))
276 << "Immune space object must be already marked";
277 }
278 // This may or may not succeed, which is ok.
279 if (kUseBakerReadBarrier) {
280 obj->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
281 }
282 if (cc_bitmap->AtomicTestAndSet(obj)) {
283 // Already marked. Do nothing.
284 } else {
285 // Newly marked. Set the gray bit and push it onto the mark stack.
286 CHECK(!kUseBakerReadBarrier || obj->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
287 collector_->PushOntoMarkStack<true>(obj);
288 }
289 }
290
291 private:
292 ConcurrentCopying* collector_;
293};
294
295class EmptyCheckpoint : public Closure {
296 public:
297 explicit EmptyCheckpoint(ConcurrentCopying* concurrent_copying)
298 : concurrent_copying_(concurrent_copying) {
299 }
300
301 virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
302 // Note: self is not necessarily equal to thread since thread may be suspended.
303 Thread* self = Thread::Current();
304 CHECK(thread == self || thread->IsSuspended() || thread->GetState() == kWaitingPerformingGc)
305 << thread->GetState() << " thread " << thread << " self " << self;
Lei Lidd9943d2015-02-02 14:24:44 +0800306 // If thread is a running mutator, then act on behalf of the garbage collector.
307 // See the code in ThreadList::RunCheckpoint.
308 if (thread->GetState() == kRunnable) {
309 concurrent_copying_->GetBarrier().Pass(self);
310 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800311 }
312
313 private:
314 ConcurrentCopying* const concurrent_copying_;
315};
316
317// Concurrently mark roots that are guarded by read barriers and process the mark stack.
318void ConcurrentCopying::MarkingPhase() {
319 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
320 if (kVerboseMode) {
321 LOG(INFO) << "GC MarkingPhase";
322 }
323 {
324 // Mark the image root. The WB-based collectors do not need to
325 // scan the image objects from roots by relying on the card table,
326 // but it's necessary for the RB to-space invariant to hold.
327 TimingLogger::ScopedTiming split1("VisitImageRoots", GetTimings());
328 gc::space::ImageSpace* image = heap_->GetImageSpace();
329 if (image != nullptr) {
330 mirror::ObjectArray<mirror::Object>* image_root = image->GetImageHeader().GetImageRoots();
331 mirror::Object* marked_image_root = Mark(image_root);
332 CHECK_EQ(image_root, marked_image_root) << "An image object does not move";
333 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
334 AssertToSpaceInvariant(nullptr, MemberOffset(0), marked_image_root);
335 }
336 }
337 }
Man Cao41656de2015-07-06 18:53:15 -0700338 // TODO: Other garbage collectors uses Runtime::VisitConcurrentRoots(), refactor this part
339 // to also use the same function.
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800340 {
341 TimingLogger::ScopedTiming split2("VisitConstantRoots", GetTimings());
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700342 Runtime::Current()->VisitConstantRoots(this);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800343 }
344 {
345 TimingLogger::ScopedTiming split3("VisitInternTableRoots", GetTimings());
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700346 Runtime::Current()->GetInternTable()->VisitRoots(this, kVisitRootFlagAllRoots);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800347 }
348 {
349 TimingLogger::ScopedTiming split4("VisitClassLinkerRoots", GetTimings());
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700350 Runtime::Current()->GetClassLinker()->VisitRoots(this, kVisitRootFlagAllRoots);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800351 }
352 {
353 // TODO: don't visit the transaction roots if it's not active.
354 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700355 Runtime::Current()->VisitNonThreadRoots(this);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800356 }
Man Cao41656de2015-07-06 18:53:15 -0700357 Runtime::Current()->GetHeap()->VisitAllocationRecords(this);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800358
359 // Immune spaces.
360 for (auto& space : heap_->GetContinuousSpaces()) {
361 if (immune_region_.ContainsSpace(space)) {
362 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
363 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
364 ConcurrentCopyingImmuneSpaceObjVisitor visitor(this);
365 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
366 reinterpret_cast<uintptr_t>(space->Limit()),
367 visitor);
368 }
369 }
370
371 Thread* self = Thread::Current();
372 {
373 TimingLogger::ScopedTiming split6("ProcessMarkStack", GetTimings());
374 // Process the mark stack and issue an empty check point. If the
375 // mark stack is still empty after the check point, we're
376 // done. Otherwise, repeat.
377 ProcessMarkStack();
378 size_t count = 0;
379 while (!ProcessMarkStack()) {
380 ++count;
381 if (kVerboseMode) {
382 LOG(INFO) << "Issue an empty check point. " << count;
383 }
384 IssueEmptyCheckpoint();
385 }
386 // Need to ensure the mark stack is empty before reference
387 // processing to get rid of non-reference gray objects.
388 CheckEmptyMarkQueue();
389 // Enable the GetReference slow path and disallow access to the system weaks.
390 GetHeap()->GetReferenceProcessor()->EnableSlowPath();
391 Runtime::Current()->DisallowNewSystemWeaks();
392 QuasiAtomic::ThreadFenceForConstructor();
393 // Lock-unlock the system weak locks so that there's no thread in
394 // the middle of accessing system weaks.
395 Runtime::Current()->EnsureNewSystemWeaksDisallowed();
396 // Note: Do not issue a checkpoint from here to the
397 // SweepSystemWeaks call or else a deadlock due to
398 // WaitHoldingLocks() would occur.
399 if (kVerboseMode) {
400 LOG(INFO) << "Enabled the ref proc slow path & disabled access to system weaks.";
401 LOG(INFO) << "ProcessReferences";
402 }
403 ProcessReferences(self, true);
404 CheckEmptyMarkQueue();
405 if (kVerboseMode) {
406 LOG(INFO) << "SweepSystemWeaks";
407 }
408 SweepSystemWeaks(self);
409 if (kVerboseMode) {
410 LOG(INFO) << "SweepSystemWeaks done";
411 }
412 // Because hash_set::Erase() can call the hash function for
413 // arbitrary elements in the weak intern table in
414 // InternTable::Table::SweepWeaks(), the above SweepSystemWeaks()
415 // call may have marked some objects (strings) alive. So process
416 // the mark stack here once again.
417 ProcessMarkStack();
418 CheckEmptyMarkQueue();
Hiroshi Yamauchi46ec5202015-06-19 17:39:45 -0700419 if (kVerboseMode) {
420 LOG(INFO) << "AllowNewSystemWeaks";
421 }
422 Runtime::Current()->AllowNewSystemWeaks();
423 IssueEmptyCheckpoint();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800424 // Disable marking.
425 if (kUseTableLookupReadBarrier) {
426 heap_->rb_table_->ClearAll();
427 DCHECK(heap_->rb_table_->IsAllCleared());
428 }
429 is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(1);
430 is_marking_ = false;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800431 CheckEmptyMarkQueue();
432 }
433
434 if (kVerboseMode) {
435 LOG(INFO) << "GC end of MarkingPhase";
436 }
437}
438
439void ConcurrentCopying::IssueEmptyCheckpoint() {
440 Thread* self = Thread::Current();
441 EmptyCheckpoint check_point(this);
442 ThreadList* thread_list = Runtime::Current()->GetThreadList();
443 gc_barrier_->Init(self, 0);
444 size_t barrier_count = thread_list->RunCheckpoint(&check_point);
Lei Lidd9943d2015-02-02 14:24:44 +0800445 // If there are no threads to wait which implys that all the checkpoint functions are finished,
446 // then no need to release the mutator lock.
447 if (barrier_count == 0) {
448 return;
449 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800450 // Release locks then wait for all mutator threads to pass the barrier.
451 Locks::mutator_lock_->SharedUnlock(self);
452 {
453 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
454 gc_barrier_->Increment(self, barrier_count);
455 }
456 Locks::mutator_lock_->SharedLock(self);
457}
458
459mirror::Object* ConcurrentCopying::PopOffMarkStack() {
460 return mark_queue_.Dequeue();
461}
462
463template<bool kThreadSafe>
464void ConcurrentCopying::PushOntoMarkStack(mirror::Object* to_ref) {
465 CHECK_EQ(is_mark_queue_push_disallowed_.LoadRelaxed(), 0)
466 << " " << to_ref << " " << PrettyTypeOf(to_ref);
467 if (kThreadSafe) {
468 CHECK(mark_queue_.Enqueue(to_ref)) << "Mark queue overflow";
469 } else {
470 CHECK(mark_queue_.EnqueueThreadUnsafe(to_ref)) << "Mark queue overflow";
471 }
472}
473
474accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
475 return heap_->allocation_stack_.get();
476}
477
478accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
479 return heap_->live_stack_.get();
480}
481
482inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) {
483 DCHECK(region_space_->IsInFromSpace(from_ref));
484 LockWord lw = from_ref->GetLockWord(false);
485 if (lw.GetState() == LockWord::kForwardingAddress) {
486 mirror::Object* fwd_ptr = reinterpret_cast<mirror::Object*>(lw.ForwardingAddress());
487 CHECK(fwd_ptr != nullptr);
488 return fwd_ptr;
489 } else {
490 return nullptr;
491 }
492}
493
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800494// The following visitors are that used to verify that there's no
495// references to the from-space left after marking.
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700496class ConcurrentCopyingVerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800497 public:
498 explicit ConcurrentCopyingVerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
499 : collector_(collector) {}
500
501 void operator()(mirror::Object* ref) const
502 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
503 if (ref == nullptr) {
504 // OK.
505 return;
506 }
507 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
508 if (kUseBakerReadBarrier) {
509 if (collector_->RegionSpace()->IsInToSpace(ref)) {
510 CHECK(ref->GetReadBarrierPointer() == nullptr)
511 << "To-space ref " << ref << " " << PrettyTypeOf(ref)
512 << " has non-white rb_ptr " << ref->GetReadBarrierPointer();
513 } else {
514 CHECK(ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
515 (ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
516 collector_->IsOnAllocStack(ref)))
517 << "Non-moving/unevac from space ref " << ref << " " << PrettyTypeOf(ref)
518 << " has non-black rb_ptr " << ref->GetReadBarrierPointer()
519 << " but isn't on the alloc stack (and has white rb_ptr)."
520 << " Is it in the non-moving space="
521 << (collector_->GetHeap()->GetNonMovingSpace()->HasAddress(ref));
522 }
523 }
524 }
525
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700526 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
527 OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800528 DCHECK(root != nullptr);
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700529 operator()(root);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800530 }
531
532 private:
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700533 ConcurrentCopying* const collector_;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800534};
535
536class ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor {
537 public:
538 explicit ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
539 : collector_(collector) {}
540
541 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
542 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
543 mirror::Object* ref =
544 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
545 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor visitor(collector_);
546 visitor(ref);
547 }
548 void operator()(mirror::Class* klass, mirror::Reference* ref) const
549 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
550 CHECK(klass->IsTypeOfReferenceClass());
551 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
552 }
553
554 private:
555 ConcurrentCopying* collector_;
556};
557
558class ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor {
559 public:
560 explicit ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor(ConcurrentCopying* collector)
561 : collector_(collector) {}
562 void operator()(mirror::Object* obj) const
563 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
564 ObjectCallback(obj, collector_);
565 }
566 static void ObjectCallback(mirror::Object* obj, void *arg)
567 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
568 CHECK(obj != nullptr);
569 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
570 space::RegionSpace* region_space = collector->RegionSpace();
571 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
572 ConcurrentCopyingVerifyNoFromSpaceRefsFieldVisitor visitor(collector);
573 obj->VisitReferences<true>(visitor, visitor);
574 if (kUseBakerReadBarrier) {
575 if (collector->RegionSpace()->IsInToSpace(obj)) {
576 CHECK(obj->GetReadBarrierPointer() == nullptr)
577 << "obj=" << obj << " non-white rb_ptr " << obj->GetReadBarrierPointer();
578 } else {
579 CHECK(obj->GetReadBarrierPointer() == ReadBarrier::BlackPtr() ||
580 (obj->GetReadBarrierPointer() == ReadBarrier::WhitePtr() &&
581 collector->IsOnAllocStack(obj)))
582 << "Non-moving space/unevac from space ref " << obj << " " << PrettyTypeOf(obj)
583 << " has non-black rb_ptr " << obj->GetReadBarrierPointer()
584 << " but isn't on the alloc stack (and has white rb_ptr). Is it in the non-moving space="
585 << (collector->GetHeap()->GetNonMovingSpace()->HasAddress(obj));
586 }
587 }
588 }
589
590 private:
591 ConcurrentCopying* const collector_;
592};
593
594// Verify there's no from-space references left after the marking phase.
595void ConcurrentCopying::VerifyNoFromSpaceReferences() {
596 Thread* self = Thread::Current();
597 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
598 ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor visitor(this);
599 // Roots.
600 {
601 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -0700602 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
603 Runtime::Current()->VisitRoots(&ref_visitor);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800604 }
605 // The to-space.
606 region_space_->WalkToSpace(ConcurrentCopyingVerifyNoFromSpaceRefsObjectVisitor::ObjectCallback,
607 this);
608 // Non-moving spaces.
609 {
610 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
611 heap_->GetMarkBitmap()->Visit(visitor);
612 }
613 // The alloc stack.
614 {
615 ConcurrentCopyingVerifyNoFromSpaceRefsVisitor ref_visitor(this);
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800616 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
617 it < end; ++it) {
618 mirror::Object* const obj = it->AsMirrorPtr();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800619 if (obj != nullptr && obj->GetClass() != nullptr) {
620 // TODO: need to call this only if obj is alive?
621 ref_visitor(obj);
622 visitor(obj);
623 }
624 }
625 }
626 // TODO: LOS. But only refs in LOS are classes.
627}
628
629// The following visitors are used to assert the to-space invariant.
630class ConcurrentCopyingAssertToSpaceInvariantRefsVisitor {
631 public:
632 explicit ConcurrentCopyingAssertToSpaceInvariantRefsVisitor(ConcurrentCopying* collector)
633 : collector_(collector) {}
634
635 void operator()(mirror::Object* ref) const
636 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
637 if (ref == nullptr) {
638 // OK.
639 return;
640 }
641 collector_->AssertToSpaceInvariant(nullptr, MemberOffset(0), ref);
642 }
643 static void RootCallback(mirror::Object** root, void *arg, const RootInfo& /*root_info*/)
644 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
645 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
646 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector);
647 DCHECK(root != nullptr);
648 visitor(*root);
649 }
650
651 private:
652 ConcurrentCopying* collector_;
653};
654
655class ConcurrentCopyingAssertToSpaceInvariantFieldVisitor {
656 public:
657 explicit ConcurrentCopyingAssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
658 : collector_(collector) {}
659
660 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
661 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
662 mirror::Object* ref =
663 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
664 ConcurrentCopyingAssertToSpaceInvariantRefsVisitor visitor(collector_);
665 visitor(ref);
666 }
667 void operator()(mirror::Class* klass, mirror::Reference* /* ref */) const
668 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
669 CHECK(klass->IsTypeOfReferenceClass());
670 }
671
672 private:
673 ConcurrentCopying* collector_;
674};
675
676class ConcurrentCopyingAssertToSpaceInvariantObjectVisitor {
677 public:
678 explicit ConcurrentCopyingAssertToSpaceInvariantObjectVisitor(ConcurrentCopying* collector)
679 : collector_(collector) {}
680 void operator()(mirror::Object* obj) const
681 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
682 ObjectCallback(obj, collector_);
683 }
684 static void ObjectCallback(mirror::Object* obj, void *arg)
685 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
686 CHECK(obj != nullptr);
687 ConcurrentCopying* collector = reinterpret_cast<ConcurrentCopying*>(arg);
688 space::RegionSpace* region_space = collector->RegionSpace();
689 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
690 collector->AssertToSpaceInvariant(nullptr, MemberOffset(0), obj);
691 ConcurrentCopyingAssertToSpaceInvariantFieldVisitor visitor(collector);
692 obj->VisitReferences<true>(visitor, visitor);
693 }
694
695 private:
696 ConcurrentCopying* collector_;
697};
698
699bool ConcurrentCopying::ProcessMarkStack() {
700 if (kVerboseMode) {
701 LOG(INFO) << "ProcessMarkStack. ";
702 }
703 size_t count = 0;
704 mirror::Object* to_ref;
705 while ((to_ref = PopOffMarkStack()) != nullptr) {
706 ++count;
707 DCHECK(!region_space_->IsInFromSpace(to_ref));
708 if (kUseBakerReadBarrier) {
709 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
710 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
711 << " is_marked=" << IsMarked(to_ref);
712 }
713 // Scan ref fields.
714 Scan(to_ref);
715 // Mark the gray ref as white or black.
716 if (kUseBakerReadBarrier) {
717 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr())
718 << " " << to_ref << " " << to_ref->GetReadBarrierPointer()
719 << " is_marked=" << IsMarked(to_ref);
720 }
721 if (to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
722 to_ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr &&
723 !IsInToSpace(to_ref->AsReference()->GetReferent<kWithoutReadBarrier>())) {
724 // Leave References gray so that GetReferent() will trigger RB.
725 CHECK(to_ref->AsReference()->IsEnqueued()) << "Left unenqueued ref gray " << to_ref;
726 } else {
Hiroshi Yamauchi60f63f52015-04-23 16:12:40 -0700727#ifdef USE_BAKER_OR_BROOKS_READ_BARRIER
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800728 if (kUseBakerReadBarrier) {
729 if (region_space_->IsInToSpace(to_ref)) {
730 // If to-space, change from gray to white.
731 bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
732 ReadBarrier::WhitePtr());
733 CHECK(success) << "Must succeed as we won the race.";
734 CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
735 } else {
736 // If non-moving space/unevac from space, change from gray
737 // to black. We can't change gray to white because it's not
738 // safe to use CAS if two threads change values in opposite
739 // directions (A->B and B->A). So, we change it to black to
740 // indicate non-moving objects that have been marked
741 // through. Note we'd need to change from black to white
742 // later (concurrently).
743 bool success = to_ref->AtomicSetReadBarrierPointer(ReadBarrier::GrayPtr(),
744 ReadBarrier::BlackPtr());
745 CHECK(success) << "Must succeed as we won the race.";
746 CHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
747 }
748 }
Hiroshi Yamauchi60f63f52015-04-23 16:12:40 -0700749#else
750 DCHECK(!kUseBakerReadBarrier);
751#endif
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800752 }
753 if (ReadBarrier::kEnableToSpaceInvariantChecks || kIsDebugBuild) {
754 ConcurrentCopyingAssertToSpaceInvariantObjectVisitor visitor(this);
755 visitor(to_ref);
756 }
757 }
758 // Return true if the stack was empty.
759 return count == 0;
760}
761
762void ConcurrentCopying::CheckEmptyMarkQueue() {
763 if (!mark_queue_.IsEmpty()) {
764 while (!mark_queue_.IsEmpty()) {
765 mirror::Object* obj = mark_queue_.Dequeue();
766 if (kUseBakerReadBarrier) {
767 mirror::Object* rb_ptr = obj->GetReadBarrierPointer();
768 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj) << " rb_ptr=" << rb_ptr
769 << " is_marked=" << IsMarked(obj);
770 } else {
771 LOG(INFO) << "On mark queue : " << obj << " " << PrettyTypeOf(obj)
772 << " is_marked=" << IsMarked(obj);
773 }
774 }
775 LOG(FATAL) << "mark queue is not empty";
776 }
777}
778
779void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
780 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
781 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
782 Runtime::Current()->SweepSystemWeaks(IsMarkedCallback, this);
783}
784
785void ConcurrentCopying::Sweep(bool swap_bitmaps) {
786 {
787 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
788 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
789 if (kEnableFromSpaceAccountingCheck) {
790 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
791 }
792 heap_->MarkAllocStackAsLive(live_stack);
793 live_stack->Reset();
794 }
795 CHECK(mark_queue_.IsEmpty());
796 TimingLogger::ScopedTiming split("Sweep", GetTimings());
797 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
798 if (space->IsContinuousMemMapAllocSpace()) {
799 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
800 if (space == region_space_ || immune_region_.ContainsSpace(space)) {
801 continue;
802 }
803 TimingLogger::ScopedTiming split2(
804 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
805 RecordFree(alloc_space->Sweep(swap_bitmaps));
806 }
807 }
808 SweepLargeObjects(swap_bitmaps);
809}
810
811void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
812 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
813 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
814}
815
816class ConcurrentCopyingClearBlackPtrsVisitor {
817 public:
818 explicit ConcurrentCopyingClearBlackPtrsVisitor(ConcurrentCopying* cc)
819 : collector_(cc) {}
Andreas Gampe65b798e2015-04-06 09:35:22 -0700820#ifndef USE_BAKER_OR_BROOKS_READ_BARRIER
821 NO_RETURN
822#endif
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800823 void operator()(mirror::Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
824 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
825 DCHECK(obj != nullptr);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800826 DCHECK(collector_->heap_->GetMarkBitmap()->Test(obj)) << obj;
827 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << obj;
Hiroshi Yamauchi60f63f52015-04-23 16:12:40 -0700828 obj->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800829 DCHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800830 }
831
832 private:
833 ConcurrentCopying* const collector_;
834};
835
836// Clear the black ptrs in non-moving objects back to white.
837void ConcurrentCopying::ClearBlackPtrs() {
838 CHECK(kUseBakerReadBarrier);
839 TimingLogger::ScopedTiming split("ClearBlackPtrs", GetTimings());
840 ConcurrentCopyingClearBlackPtrsVisitor visitor(this);
841 for (auto& space : heap_->GetContinuousSpaces()) {
842 if (space == region_space_) {
843 continue;
844 }
845 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
846 if (kVerboseMode) {
847 LOG(INFO) << "ClearBlackPtrs: " << *space << " bitmap: " << *mark_bitmap;
848 }
849 mark_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
850 reinterpret_cast<uintptr_t>(space->Limit()),
851 visitor);
852 }
853 space::LargeObjectSpace* large_object_space = heap_->GetLargeObjectsSpace();
854 large_object_space->GetMarkBitmap()->VisitMarkedRange(
855 reinterpret_cast<uintptr_t>(large_object_space->Begin()),
856 reinterpret_cast<uintptr_t>(large_object_space->End()),
857 visitor);
858 // Objects on the allocation stack?
859 if (ReadBarrier::kEnableReadBarrierInvariantChecks || kIsDebugBuild) {
860 size_t count = GetAllocationStack()->Size();
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800861 auto* it = GetAllocationStack()->Begin();
862 auto* end = GetAllocationStack()->End();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800863 for (size_t i = 0; i < count; ++i, ++it) {
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800864 CHECK_LT(it, end);
865 mirror::Object* obj = it->AsMirrorPtr();
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800866 if (obj != nullptr) {
867 // Must have been cleared above.
Mathieu Chartiercb535da2015-01-23 13:50:03 -0800868 CHECK_EQ(obj->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << obj;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800869 }
870 }
871 }
872}
873
874void ConcurrentCopying::ReclaimPhase() {
875 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
876 if (kVerboseMode) {
877 LOG(INFO) << "GC ReclaimPhase";
878 }
879 Thread* self = Thread::Current();
880
881 {
882 // Double-check that the mark stack is empty.
883 // Note: need to set this after VerifyNoFromSpaceRef().
884 is_asserting_to_space_invariant_ = false;
885 QuasiAtomic::ThreadFenceForConstructor();
886 if (kVerboseMode) {
887 LOG(INFO) << "Issue an empty check point. ";
888 }
889 IssueEmptyCheckpoint();
890 // Disable the check.
891 is_mark_queue_push_disallowed_.StoreSequentiallyConsistent(0);
892 CheckEmptyMarkQueue();
893 }
894
895 {
896 // Record freed objects.
897 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
898 // Don't include thread-locals that are in the to-space.
899 uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
900 uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
901 uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
902 uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
903 uint64_t to_bytes = bytes_moved_.LoadSequentiallyConsistent();
904 uint64_t to_objects = objects_moved_.LoadSequentiallyConsistent();
905 if (kEnableFromSpaceAccountingCheck) {
906 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
907 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
908 }
909 CHECK_LE(to_objects, from_objects);
910 CHECK_LE(to_bytes, from_bytes);
911 int64_t freed_bytes = from_bytes - to_bytes;
912 int64_t freed_objects = from_objects - to_objects;
913 if (kVerboseMode) {
914 LOG(INFO) << "RecordFree:"
915 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
916 << " unevac_from_bytes=" << unevac_from_bytes << " unevac_from_objects=" << unevac_from_objects
917 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
918 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
919 << " from_space size=" << region_space_->FromSpaceSize()
920 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
921 << " to_space size=" << region_space_->ToSpaceSize();
922 LOG(INFO) << "(before) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
923 }
924 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
925 if (kVerboseMode) {
926 LOG(INFO) << "(after) num_bytes_allocated=" << heap_->num_bytes_allocated_.LoadSequentiallyConsistent();
927 }
928 }
929
930 {
931 TimingLogger::ScopedTiming split3("ComputeUnevacFromSpaceLiveRatio", GetTimings());
932 ComputeUnevacFromSpaceLiveRatio();
933 }
934
935 {
936 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
937 region_space_->ClearFromSpace();
938 }
939
940 {
941 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
942 if (kUseBakerReadBarrier) {
943 ClearBlackPtrs();
944 }
945 Sweep(false);
946 SwapBitmaps();
947 heap_->UnBindBitmaps();
948
949 // Remove bitmaps for the immune spaces.
950 while (!cc_bitmaps_.empty()) {
951 accounting::ContinuousSpaceBitmap* cc_bitmap = cc_bitmaps_.back();
952 cc_heap_bitmap_->RemoveContinuousSpaceBitmap(cc_bitmap);
953 delete cc_bitmap;
954 cc_bitmaps_.pop_back();
955 }
956 region_space_bitmap_ = nullptr;
957 }
958
959 if (kVerboseMode) {
960 LOG(INFO) << "GC end of ReclaimPhase";
961 }
962}
963
964class ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor {
965 public:
966 explicit ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor(ConcurrentCopying* cc)
967 : collector_(cc) {}
968 void operator()(mirror::Object* ref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
969 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
970 DCHECK(ref != nullptr);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800971 DCHECK(collector_->region_space_bitmap_->Test(ref)) << ref;
972 DCHECK(collector_->region_space_->IsInUnevacFromSpace(ref)) << ref;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800973 if (kUseBakerReadBarrier) {
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -0800974 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::BlackPtr()) << ref;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800975 // Clear the black ptr.
Hiroshi Yamauchi60f63f52015-04-23 16:12:40 -0700976 ref->AtomicSetReadBarrierPointer(ReadBarrier::BlackPtr(), ReadBarrier::WhitePtr());
977 DCHECK_EQ(ref->GetReadBarrierPointer(), ReadBarrier::WhitePtr()) << ref;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -0800978 }
979 size_t obj_size = ref->SizeOf();
980 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
981 collector_->region_space_->AddLiveBytes(ref, alloc_size);
982 }
983
984 private:
985 ConcurrentCopying* collector_;
986};
987
988// Compute how much live objects are left in regions.
989void ConcurrentCopying::ComputeUnevacFromSpaceLiveRatio() {
990 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
991 ConcurrentCopyingComputeUnevacFromSpaceLiveRatioVisitor visitor(this);
992 region_space_bitmap_->VisitMarkedRange(reinterpret_cast<uintptr_t>(region_space_->Begin()),
993 reinterpret_cast<uintptr_t>(region_space_->Limit()),
994 visitor);
995}
996
997// Assert the to-space invariant.
998void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj, MemberOffset offset,
999 mirror::Object* ref) {
1000 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1001 if (is_asserting_to_space_invariant_) {
1002 if (region_space_->IsInToSpace(ref)) {
1003 // OK.
1004 return;
1005 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1006 CHECK(region_space_bitmap_->Test(ref)) << ref;
1007 } else if (region_space_->IsInFromSpace(ref)) {
1008 // Not OK. Do extra logging.
1009 if (obj != nullptr) {
Hiroshi Yamauchi3f64f252015-06-12 18:35:06 -07001010 LogFromSpaceRefHolder(obj, offset);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001011 }
Hiroshi Yamauchi3f64f252015-06-12 18:35:06 -07001012 ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001013 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1014 } else {
Hiroshi Yamauchi3f64f252015-06-12 18:35:06 -07001015 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
1016 }
1017 }
1018}
1019
1020class RootPrinter {
1021 public:
1022 RootPrinter() { }
1023
1024 template <class MirrorType>
1025 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
1026 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1027 if (!root->IsNull()) {
1028 VisitRoot(root);
1029 }
1030 }
1031
1032 template <class MirrorType>
1033 void VisitRoot(mirror::Object** root)
1034 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1035 LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << *root;
1036 }
1037
1038 template <class MirrorType>
1039 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
1040 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1041 LOG(INTERNAL_FATAL) << "root=" << root << " ref=" << root->AsMirrorPtr();
1042 }
1043};
1044
1045void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
1046 mirror::Object* ref) {
1047 CHECK(heap_->collector_type_ == kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
1048 if (is_asserting_to_space_invariant_) {
1049 if (region_space_->IsInToSpace(ref)) {
1050 // OK.
1051 return;
1052 } else if (region_space_->IsInUnevacFromSpace(ref)) {
1053 CHECK(region_space_bitmap_->Test(ref)) << ref;
1054 } else if (region_space_->IsInFromSpace(ref)) {
1055 // Not OK. Do extra logging.
1056 if (gc_root_source == nullptr) {
1057 // No info.
1058 } else if (gc_root_source->HasArtField()) {
1059 ArtField* field = gc_root_source->GetArtField();
1060 LOG(INTERNAL_FATAL) << "gc root in field " << field << " " << PrettyField(field);
1061 RootPrinter root_printer;
1062 field->VisitRoots(root_printer);
1063 } else if (gc_root_source->HasArtMethod()) {
1064 ArtMethod* method = gc_root_source->GetArtMethod();
1065 LOG(INTERNAL_FATAL) << "gc root in method " << method << " " << PrettyMethod(method);
1066 RootPrinter root_printer;
1067 method->VisitRoots(root_printer);
1068 }
1069 ref->GetLockWord(false).Dump(LOG(INTERNAL_FATAL));
1070 region_space_->DumpNonFreeRegions(LOG(INTERNAL_FATAL));
1071 PrintFileToLog("/proc/self/maps", LogSeverity::INTERNAL_FATAL);
1072 MemMap::DumpMaps(LOG(INTERNAL_FATAL), true);
1073 CHECK(false) << "Found from-space ref " << ref << " " << PrettyTypeOf(ref);
1074 } else {
1075 AssertToSpaceInvariantInNonMovingSpace(nullptr, ref);
1076 }
1077 }
1078}
1079
1080void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
1081 if (kUseBakerReadBarrier) {
1082 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj)
1083 << " holder rb_ptr=" << obj->GetReadBarrierPointer();
1084 } else {
1085 LOG(INFO) << "holder=" << obj << " " << PrettyTypeOf(obj);
1086 }
1087 if (region_space_->IsInFromSpace(obj)) {
1088 LOG(INFO) << "holder is in the from-space.";
1089 } else if (region_space_->IsInToSpace(obj)) {
1090 LOG(INFO) << "holder is in the to-space.";
1091 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1092 LOG(INFO) << "holder is in the unevac from-space.";
1093 if (region_space_bitmap_->Test(obj)) {
1094 LOG(INFO) << "holder is marked in the region space bitmap.";
1095 } else {
1096 LOG(INFO) << "holder is not marked in the region space bitmap.";
1097 }
1098 } else {
1099 // In a non-moving space.
1100 if (immune_region_.ContainsObject(obj)) {
1101 LOG(INFO) << "holder is in the image or the zygote space.";
1102 accounting::ContinuousSpaceBitmap* cc_bitmap =
1103 cc_heap_bitmap_->GetContinuousSpaceBitmap(obj);
1104 CHECK(cc_bitmap != nullptr)
1105 << "An immune space object must have a bitmap.";
1106 if (cc_bitmap->Test(obj)) {
1107 LOG(INFO) << "holder is marked in the bit map.";
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001108 } else {
Hiroshi Yamauchi3f64f252015-06-12 18:35:06 -07001109 LOG(INFO) << "holder is NOT marked in the bit map.";
1110 }
1111 } else {
1112 LOG(INFO) << "holder is in a non-moving (or main) space.";
1113 accounting::ContinuousSpaceBitmap* mark_bitmap =
1114 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
1115 accounting::LargeObjectBitmap* los_bitmap =
1116 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
1117 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1118 bool is_los = mark_bitmap == nullptr;
1119 if (!is_los && mark_bitmap->Test(obj)) {
1120 LOG(INFO) << "holder is marked in the mark bit map.";
1121 } else if (is_los && los_bitmap->Test(obj)) {
1122 LOG(INFO) << "holder is marked in the los bit map.";
1123 } else {
1124 // If ref is on the allocation stack, then it is considered
1125 // mark/alive (but not necessarily on the live stack.)
1126 if (IsOnAllocStack(obj)) {
1127 LOG(INFO) << "holder is on the alloc stack.";
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001128 } else {
Hiroshi Yamauchi3f64f252015-06-12 18:35:06 -07001129 LOG(INFO) << "holder is not marked or on the alloc stack.";
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001130 }
1131 }
1132 }
1133 }
Hiroshi Yamauchi3f64f252015-06-12 18:35:06 -07001134 LOG(INFO) << "offset=" << offset.SizeValue();
1135}
1136
1137void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
1138 mirror::Object* ref) {
1139 // In a non-moving spaces. Check that the ref is marked.
1140 if (immune_region_.ContainsObject(ref)) {
1141 accounting::ContinuousSpaceBitmap* cc_bitmap =
1142 cc_heap_bitmap_->GetContinuousSpaceBitmap(ref);
1143 CHECK(cc_bitmap != nullptr)
1144 << "An immune space ref must have a bitmap. " << ref;
1145 if (kUseBakerReadBarrier) {
1146 CHECK(cc_bitmap->Test(ref))
1147 << "Unmarked immune space ref. obj=" << obj << " rb_ptr="
1148 << obj->GetReadBarrierPointer() << " ref=" << ref;
1149 } else {
1150 CHECK(cc_bitmap->Test(ref))
1151 << "Unmarked immune space ref. obj=" << obj << " ref=" << ref;
1152 }
1153 } else {
1154 accounting::ContinuousSpaceBitmap* mark_bitmap =
1155 heap_mark_bitmap_->GetContinuousSpaceBitmap(ref);
1156 accounting::LargeObjectBitmap* los_bitmap =
1157 heap_mark_bitmap_->GetLargeObjectBitmap(ref);
1158 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1159 bool is_los = mark_bitmap == nullptr;
1160 if ((!is_los && mark_bitmap->Test(ref)) ||
1161 (is_los && los_bitmap->Test(ref))) {
1162 // OK.
1163 } else {
1164 // If ref is on the allocation stack, then it may not be
1165 // marked live, but considered marked/alive (but not
1166 // necessarily on the live stack).
1167 CHECK(IsOnAllocStack(ref)) << "Unmarked ref that's not on the allocation stack. "
1168 << "obj=" << obj << " ref=" << ref;
1169 }
1170 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001171}
1172
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001173// Used to scan ref fields of an object.
1174class ConcurrentCopyingRefFieldsVisitor {
1175 public:
1176 explicit ConcurrentCopyingRefFieldsVisitor(ConcurrentCopying* collector)
1177 : collector_(collector) {}
1178
1179 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
1180 const ALWAYS_INLINE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1181 SHARED_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1182 collector_->Process(obj, offset);
1183 }
1184
1185 void operator()(mirror::Class* klass, mirror::Reference* ref) const
1186 SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE {
1187 CHECK(klass->IsTypeOfReferenceClass());
1188 collector_->DelayReferenceReferent(klass, ref);
1189 }
1190
1191 private:
1192 ConcurrentCopying* const collector_;
1193};
1194
1195// Scan ref fields of an object.
1196void ConcurrentCopying::Scan(mirror::Object* to_ref) {
1197 DCHECK(!region_space_->IsInFromSpace(to_ref));
1198 ConcurrentCopyingRefFieldsVisitor visitor(this);
1199 to_ref->VisitReferences<true>(visitor, visitor);
1200}
1201
1202// Process a field.
1203inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
1204 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
1205 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
1206 return;
1207 }
1208 mirror::Object* to_ref = Mark(ref);
1209 if (to_ref == ref) {
1210 return;
1211 }
1212 // This may fail if the mutator writes to the field at the same time. But it's ok.
1213 mirror::Object* expected_ref = ref;
1214 mirror::Object* new_ref = to_ref;
1215 do {
1216 if (expected_ref !=
1217 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
1218 // It was updated by the mutator.
1219 break;
1220 }
1221 } while (!obj->CasFieldWeakSequentiallyConsistentObjectWithoutWriteBarrier<false, false, kVerifyNone>(
1222 offset, expected_ref, new_ref));
1223}
1224
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -07001225// Process some roots.
1226void ConcurrentCopying::VisitRoots(
1227 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
1228 for (size_t i = 0; i < count; ++i) {
1229 mirror::Object** root = roots[i];
1230 mirror::Object* ref = *root;
1231 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
Mathieu Chartier4809d0a2015-04-07 10:39:04 -07001232 continue;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001233 }
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -07001234 mirror::Object* to_ref = Mark(ref);
1235 if (to_ref == ref) {
Mathieu Chartier4809d0a2015-04-07 10:39:04 -07001236 continue;
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -07001237 }
1238 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
1239 mirror::Object* expected_ref = ref;
1240 mirror::Object* new_ref = to_ref;
1241 do {
1242 if (expected_ref != addr->LoadRelaxed()) {
1243 // It was updated by the mutator.
1244 break;
1245 }
1246 } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1247 }
1248}
1249
1250void ConcurrentCopying::VisitRoots(
1251 mirror::CompressedReference<mirror::Object>** roots, size_t count,
1252 const RootInfo& info ATTRIBUTE_UNUSED) {
1253 for (size_t i = 0; i < count; ++i) {
1254 mirror::CompressedReference<mirror::Object>* root = roots[i];
1255 mirror::Object* ref = root->AsMirrorPtr();
1256 if (ref == nullptr || region_space_->IsInToSpace(ref)) {
Mathieu Chartier4809d0a2015-04-07 10:39:04 -07001257 continue;
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -07001258 }
1259 mirror::Object* to_ref = Mark(ref);
1260 if (to_ref == ref) {
Mathieu Chartier4809d0a2015-04-07 10:39:04 -07001261 continue;
Mathieu Chartierbb87e0f2015-04-03 11:21:55 -07001262 }
1263 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
1264 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
1265 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
1266 do {
1267 if (ref != addr->LoadRelaxed().AsMirrorPtr()) {
1268 // It was updated by the mutator.
1269 break;
1270 }
1271 } while (!addr->CompareExchangeWeakSequentiallyConsistent(expected_ref, new_ref));
1272 }
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001273}
1274
1275// Fill the given memory block with a dummy object. Used to fill in a
1276// copy of objects that was lost in race.
1277void ConcurrentCopying::FillWithDummyObject(mirror::Object* dummy_obj, size_t byte_size) {
1278 CHECK(IsAligned<kObjectAlignment>(byte_size));
1279 memset(dummy_obj, 0, byte_size);
1280 mirror::Class* int_array_class = mirror::IntArray::GetArrayClass();
1281 CHECK(int_array_class != nullptr);
1282 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
1283 size_t component_size = int_array_class->GetComponentSize();
1284 CHECK_EQ(component_size, sizeof(int32_t));
1285 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
1286 if (data_offset > byte_size) {
1287 // An int array is too big. Use java.lang.Object.
1288 mirror::Class* java_lang_Object = WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object);
1289 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object);
1290 CHECK_EQ(byte_size, java_lang_Object->GetObjectSize());
1291 dummy_obj->SetClass(java_lang_Object);
1292 CHECK_EQ(byte_size, dummy_obj->SizeOf());
1293 } else {
1294 // Use an int array.
1295 dummy_obj->SetClass(int_array_class);
1296 CHECK(dummy_obj->IsArrayInstance());
1297 int32_t length = (byte_size - data_offset) / component_size;
1298 dummy_obj->AsArray()->SetLength(length);
1299 CHECK_EQ(dummy_obj->AsArray()->GetLength(), length)
1300 << "byte_size=" << byte_size << " length=" << length
1301 << " component_size=" << component_size << " data_offset=" << data_offset;
1302 CHECK_EQ(byte_size, dummy_obj->SizeOf())
1303 << "byte_size=" << byte_size << " length=" << length
1304 << " component_size=" << component_size << " data_offset=" << data_offset;
1305 }
1306}
1307
1308// Reuse the memory blocks that were copy of objects that were lost in race.
1309mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(size_t alloc_size) {
1310 // Try to reuse the blocks that were unused due to CAS failures.
1311 CHECK(IsAligned<space::RegionSpace::kAlignment>(alloc_size));
1312 Thread* self = Thread::Current();
1313 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
1314 MutexLock mu(self, skipped_blocks_lock_);
1315 auto it = skipped_blocks_map_.lower_bound(alloc_size);
1316 if (it == skipped_blocks_map_.end()) {
1317 // Not found.
1318 return nullptr;
1319 }
1320 {
1321 size_t byte_size = it->first;
1322 CHECK_GE(byte_size, alloc_size);
1323 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
1324 // If remainder would be too small for a dummy object, retry with a larger request size.
1325 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
1326 if (it == skipped_blocks_map_.end()) {
1327 // Not found.
1328 return nullptr;
1329 }
1330 CHECK(IsAligned<space::RegionSpace::kAlignment>(it->first - alloc_size));
1331 CHECK_GE(it->first - alloc_size, min_object_size)
1332 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
1333 }
1334 }
1335 // Found a block.
1336 CHECK(it != skipped_blocks_map_.end());
1337 size_t byte_size = it->first;
1338 uint8_t* addr = it->second;
1339 CHECK_GE(byte_size, alloc_size);
1340 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
1341 CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size));
1342 if (kVerboseMode) {
1343 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
1344 }
1345 skipped_blocks_map_.erase(it);
1346 memset(addr, 0, byte_size);
1347 if (byte_size > alloc_size) {
1348 // Return the remainder to the map.
1349 CHECK(IsAligned<space::RegionSpace::kAlignment>(byte_size - alloc_size));
1350 CHECK_GE(byte_size - alloc_size, min_object_size);
1351 FillWithDummyObject(reinterpret_cast<mirror::Object*>(addr + alloc_size),
1352 byte_size - alloc_size);
1353 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
1354 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
1355 }
1356 return reinterpret_cast<mirror::Object*>(addr);
1357}
1358
1359mirror::Object* ConcurrentCopying::Copy(mirror::Object* from_ref) {
1360 DCHECK(region_space_->IsInFromSpace(from_ref));
1361 // No read barrier to avoid nested RB that might violate the to-space
1362 // invariant. Note that from_ref is a from space ref so the SizeOf()
1363 // call will access the from-space meta objects, but it's ok and necessary.
1364 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags, kWithoutReadBarrier>();
1365 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1366 size_t region_space_bytes_allocated = 0U;
1367 size_t non_moving_space_bytes_allocated = 0U;
1368 size_t bytes_allocated = 0U;
Hiroshi Yamauchi4460a842015-03-09 11:57:48 -07001369 size_t dummy;
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001370 mirror::Object* to_ref = region_space_->AllocNonvirtual<true>(
Hiroshi Yamauchi4460a842015-03-09 11:57:48 -07001371 region_space_alloc_size, &region_space_bytes_allocated, nullptr, &dummy);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001372 bytes_allocated = region_space_bytes_allocated;
1373 if (to_ref != nullptr) {
1374 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
1375 }
1376 bool fall_back_to_non_moving = false;
1377 if (UNLIKELY(to_ref == nullptr)) {
1378 // Failed to allocate in the region space. Try the skipped blocks.
1379 to_ref = AllocateInSkippedBlock(region_space_alloc_size);
1380 if (to_ref != nullptr) {
1381 // Succeeded to allocate in a skipped block.
1382 if (heap_->use_tlab_) {
1383 // This is necessary for the tlab case as it's not accounted in the space.
1384 region_space_->RecordAlloc(to_ref);
1385 }
1386 bytes_allocated = region_space_alloc_size;
1387 } else {
1388 // Fall back to the non-moving space.
1389 fall_back_to_non_moving = true;
1390 if (kVerboseMode) {
1391 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
1392 << to_space_bytes_skipped_.LoadSequentiallyConsistent()
1393 << " skipped_objects=" << to_space_objects_skipped_.LoadSequentiallyConsistent();
1394 }
1395 fall_back_to_non_moving = true;
1396 to_ref = heap_->non_moving_space_->Alloc(Thread::Current(), obj_size,
Hiroshi Yamauchi4460a842015-03-09 11:57:48 -07001397 &non_moving_space_bytes_allocated, nullptr, &dummy);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001398 CHECK(to_ref != nullptr) << "Fall-back non-moving space allocation failed";
1399 bytes_allocated = non_moving_space_bytes_allocated;
1400 // Mark it in the mark bitmap.
1401 accounting::ContinuousSpaceBitmap* mark_bitmap =
1402 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1403 CHECK(mark_bitmap != nullptr);
1404 CHECK(!mark_bitmap->AtomicTestAndSet(to_ref));
1405 }
1406 }
1407 DCHECK(to_ref != nullptr);
1408
1409 // Attempt to install the forward pointer. This is in a loop as the
1410 // lock word atomic write can fail.
1411 while (true) {
1412 // Copy the object. TODO: copy only the lockword in the second iteration and on?
1413 memcpy(to_ref, from_ref, obj_size);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001414
1415 LockWord old_lock_word = to_ref->GetLockWord(false);
1416
1417 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
1418 // Lost the race. Another thread (either GC or mutator) stored
1419 // the forwarding pointer first. Make the lost copy (to_ref)
1420 // look like a valid but dead (dummy) object and keep it for
1421 // future reuse.
1422 FillWithDummyObject(to_ref, bytes_allocated);
1423 if (!fall_back_to_non_moving) {
1424 DCHECK(region_space_->IsInToSpace(to_ref));
1425 if (bytes_allocated > space::RegionSpace::kRegionSize) {
1426 // Free the large alloc.
1427 region_space_->FreeLarge(to_ref, bytes_allocated);
1428 } else {
1429 // Record the lost copy for later reuse.
1430 heap_->num_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1431 to_space_bytes_skipped_.FetchAndAddSequentiallyConsistent(bytes_allocated);
1432 to_space_objects_skipped_.FetchAndAddSequentiallyConsistent(1);
1433 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1434 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
1435 reinterpret_cast<uint8_t*>(to_ref)));
1436 }
1437 } else {
1438 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1439 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1440 // Free the non-moving-space chunk.
1441 accounting::ContinuousSpaceBitmap* mark_bitmap =
1442 heap_mark_bitmap_->GetContinuousSpaceBitmap(to_ref);
1443 CHECK(mark_bitmap != nullptr);
1444 CHECK(mark_bitmap->Clear(to_ref));
1445 heap_->non_moving_space_->Free(Thread::Current(), to_ref);
1446 }
1447
1448 // Get the winner's forward ptr.
1449 mirror::Object* lost_fwd_ptr = to_ref;
1450 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
1451 CHECK(to_ref != nullptr);
1452 CHECK_NE(to_ref, lost_fwd_ptr);
1453 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref));
1454 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1455 return to_ref;
1456 }
1457
Hiroshi Yamauchi60f63f52015-04-23 16:12:40 -07001458 // Set the gray ptr.
1459 if (kUseBakerReadBarrier) {
1460 to_ref->SetReadBarrierPointer(ReadBarrier::GrayPtr());
1461 }
1462
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001463 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
1464
1465 // Try to atomically write the fwd ptr.
1466 bool success = from_ref->CasLockWordWeakSequentiallyConsistent(old_lock_word, new_lock_word);
1467 if (LIKELY(success)) {
1468 // The CAS succeeded.
1469 objects_moved_.FetchAndAddSequentiallyConsistent(1);
1470 bytes_moved_.FetchAndAddSequentiallyConsistent(region_space_alloc_size);
1471 if (LIKELY(!fall_back_to_non_moving)) {
1472 DCHECK(region_space_->IsInToSpace(to_ref));
1473 } else {
1474 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
1475 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
1476 }
1477 if (kUseBakerReadBarrier) {
1478 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1479 }
1480 DCHECK(GetFwdPtr(from_ref) == to_ref);
1481 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
1482 PushOntoMarkStack<true>(to_ref);
1483 return to_ref;
1484 } else {
1485 // The CAS failed. It may have lost the race or may have failed
1486 // due to monitor/hashcode ops. Either way, retry.
1487 }
1488 }
1489}
1490
1491mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
1492 DCHECK(from_ref != nullptr);
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001493 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1494 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001495 // It's already marked.
1496 return from_ref;
1497 }
1498 mirror::Object* to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001499 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001500 to_ref = GetFwdPtr(from_ref);
1501 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
1502 heap_->non_moving_space_->HasAddress(to_ref))
1503 << "from_ref=" << from_ref << " to_ref=" << to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001504 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001505 if (region_space_bitmap_->Test(from_ref)) {
1506 to_ref = from_ref;
1507 } else {
1508 to_ref = nullptr;
1509 }
1510 } else {
1511 // from_ref is in a non-moving space.
1512 if (immune_region_.ContainsObject(from_ref)) {
1513 accounting::ContinuousSpaceBitmap* cc_bitmap =
1514 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1515 DCHECK(cc_bitmap != nullptr)
1516 << "An immune space object must have a bitmap";
1517 if (kIsDebugBuild) {
1518 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1519 << "Immune space object must be already marked";
1520 }
1521 if (cc_bitmap->Test(from_ref)) {
1522 // Already marked.
1523 to_ref = from_ref;
1524 } else {
1525 // Newly marked.
1526 to_ref = nullptr;
1527 }
1528 } else {
1529 // Non-immune non-moving space. Use the mark bitmap.
1530 accounting::ContinuousSpaceBitmap* mark_bitmap =
1531 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1532 accounting::LargeObjectBitmap* los_bitmap =
1533 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1534 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1535 bool is_los = mark_bitmap == nullptr;
1536 if (!is_los && mark_bitmap->Test(from_ref)) {
1537 // Already marked.
1538 to_ref = from_ref;
1539 } else if (is_los && los_bitmap->Test(from_ref)) {
1540 // Already marked in LOS.
1541 to_ref = from_ref;
1542 } else {
1543 // Not marked.
1544 if (IsOnAllocStack(from_ref)) {
1545 // If on the allocation stack, it's considered marked.
1546 to_ref = from_ref;
1547 } else {
1548 // Not marked.
1549 to_ref = nullptr;
1550 }
1551 }
1552 }
1553 }
1554 return to_ref;
1555}
1556
1557bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
1558 QuasiAtomic::ThreadFenceAcquire();
1559 accounting::ObjectStack* alloc_stack = GetAllocationStack();
Mathieu Chartiercb535da2015-01-23 13:50:03 -08001560 return alloc_stack->Contains(ref);
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001561}
1562
1563mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref) {
1564 if (from_ref == nullptr) {
1565 return nullptr;
1566 }
1567 DCHECK(from_ref != nullptr);
1568 DCHECK(heap_->collector_type_ == kCollectorTypeCC);
Hiroshi Yamauchi60f63f52015-04-23 16:12:40 -07001569 if (kUseBakerReadBarrier && !is_active_) {
1570 // In the lock word forward address state, the read barrier bits
1571 // in the lock word are part of the stored forwarding address and
1572 // invalid. This is usually OK as the from-space copy of objects
1573 // aren't accessed by mutators due to the to-space
1574 // invariant. However, during the dex2oat image writing relocation
1575 // and the zygote compaction, objects can be in the forward
1576 // address state (to store the forward/relocation addresses) and
1577 // they can still be accessed and the invalid read barrier bits
1578 // are consulted. If they look like gray but aren't really, the
1579 // read barriers slow path can trigger when it shouldn't. To guard
1580 // against this, return here if the CC collector isn't running.
1581 return from_ref;
1582 }
1583 DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?";
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001584 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
1585 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001586 // It's already marked.
1587 return from_ref;
1588 }
1589 mirror::Object* to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001590 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001591 to_ref = GetFwdPtr(from_ref);
1592 if (kUseBakerReadBarrier) {
1593 DCHECK(to_ref != ReadBarrier::GrayPtr()) << "from_ref=" << from_ref << " to_ref=" << to_ref;
1594 }
1595 if (to_ref == nullptr) {
1596 // It isn't marked yet. Mark it by copying it to the to-space.
1597 to_ref = Copy(from_ref);
1598 }
1599 DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
1600 << "from_ref=" << from_ref << " to_ref=" << to_ref;
Hiroshi Yamauchid25f8422015-01-30 16:25:12 -08001601 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
Hiroshi Yamauchi2cd334a2015-01-09 14:03:35 -08001602 // This may or may not succeed, which is ok.
1603 if (kUseBakerReadBarrier) {
1604 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1605 }
1606 if (region_space_bitmap_->AtomicTestAndSet(from_ref)) {
1607 // Already marked.
1608 to_ref = from_ref;
1609 } else {
1610 // Newly marked.
1611 to_ref = from_ref;
1612 if (kUseBakerReadBarrier) {
1613 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1614 }
1615 PushOntoMarkStack<true>(to_ref);
1616 }
1617 } else {
1618 // from_ref is in a non-moving space.
1619 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
1620 if (immune_region_.ContainsObject(from_ref)) {
1621 accounting::ContinuousSpaceBitmap* cc_bitmap =
1622 cc_heap_bitmap_->GetContinuousSpaceBitmap(from_ref);
1623 DCHECK(cc_bitmap != nullptr)
1624 << "An immune space object must have a bitmap";
1625 if (kIsDebugBuild) {
1626 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref)->Test(from_ref))
1627 << "Immune space object must be already marked";
1628 }
1629 // This may or may not succeed, which is ok.
1630 if (kUseBakerReadBarrier) {
1631 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1632 }
1633 if (cc_bitmap->AtomicTestAndSet(from_ref)) {
1634 // Already marked.
1635 to_ref = from_ref;
1636 } else {
1637 // Newly marked.
1638 to_ref = from_ref;
1639 if (kUseBakerReadBarrier) {
1640 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1641 }
1642 PushOntoMarkStack<true>(to_ref);
1643 }
1644 } else {
1645 // Use the mark bitmap.
1646 accounting::ContinuousSpaceBitmap* mark_bitmap =
1647 heap_mark_bitmap_->GetContinuousSpaceBitmap(from_ref);
1648 accounting::LargeObjectBitmap* los_bitmap =
1649 heap_mark_bitmap_->GetLargeObjectBitmap(from_ref);
1650 CHECK(los_bitmap != nullptr) << "LOS bitmap covers the entire address range";
1651 bool is_los = mark_bitmap == nullptr;
1652 if (!is_los && mark_bitmap->Test(from_ref)) {
1653 // Already marked.
1654 to_ref = from_ref;
1655 if (kUseBakerReadBarrier) {
1656 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1657 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1658 }
1659 } else if (is_los && los_bitmap->Test(from_ref)) {
1660 // Already marked in LOS.
1661 to_ref = from_ref;
1662 if (kUseBakerReadBarrier) {
1663 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr() ||
1664 to_ref->GetReadBarrierPointer() == ReadBarrier::BlackPtr());
1665 }
1666 } else {
1667 // Not marked.
1668 if (IsOnAllocStack(from_ref)) {
1669 // If it's on the allocation stack, it's considered marked. Keep it white.
1670 to_ref = from_ref;
1671 // Objects on the allocation stack need not be marked.
1672 if (!is_los) {
1673 DCHECK(!mark_bitmap->Test(to_ref));
1674 } else {
1675 DCHECK(!los_bitmap->Test(to_ref));
1676 }
1677 if (kUseBakerReadBarrier) {
1678 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::WhitePtr());
1679 }
1680 } else {
1681 // Not marked or on the allocation stack. Try to mark it.
1682 // This may or may not succeed, which is ok.
1683 if (kUseBakerReadBarrier) {
1684 from_ref->AtomicSetReadBarrierPointer(ReadBarrier::WhitePtr(), ReadBarrier::GrayPtr());
1685 }
1686 if (!is_los && mark_bitmap->AtomicTestAndSet(from_ref)) {
1687 // Already marked.
1688 to_ref = from_ref;
1689 } else if (is_los && los_bitmap->AtomicTestAndSet(from_ref)) {
1690 // Already marked in LOS.
1691 to_ref = from_ref;
1692 } else {
1693 // Newly marked.
1694 to_ref = from_ref;
1695 if (kUseBakerReadBarrier) {
1696 DCHECK(to_ref->GetReadBarrierPointer() == ReadBarrier::GrayPtr());
1697 }
1698 PushOntoMarkStack<true>(to_ref);
1699 }
1700 }
1701 }
1702 }
1703 }
1704 return to_ref;
1705}
1706
1707void ConcurrentCopying::FinishPhase() {
1708 region_space_ = nullptr;
1709 CHECK(mark_queue_.IsEmpty());
1710 mark_queue_.Clear();
1711 {
1712 MutexLock mu(Thread::Current(), skipped_blocks_lock_);
1713 skipped_blocks_map_.clear();
1714 }
1715 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1716 heap_->ClearMarkedObjects();
1717}
1718
1719mirror::Object* ConcurrentCopying::IsMarkedCallback(mirror::Object* from_ref, void* arg) {
1720 return reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1721}
1722
1723bool ConcurrentCopying::IsHeapReferenceMarkedCallback(
1724 mirror::HeapReference<mirror::Object>* field, void* arg) {
1725 mirror::Object* from_ref = field->AsMirrorPtr();
1726 mirror::Object* to_ref = reinterpret_cast<ConcurrentCopying*>(arg)->IsMarked(from_ref);
1727 if (to_ref == nullptr) {
1728 return false;
1729 }
1730 if (from_ref != to_ref) {
1731 QuasiAtomic::ThreadFenceRelease();
1732 field->Assign(to_ref);
1733 QuasiAtomic::ThreadFenceSequentiallyConsistent();
1734 }
1735 return true;
1736}
1737
1738mirror::Object* ConcurrentCopying::MarkCallback(mirror::Object* from_ref, void* arg) {
1739 return reinterpret_cast<ConcurrentCopying*>(arg)->Mark(from_ref);
1740}
1741
1742void ConcurrentCopying::ProcessMarkStackCallback(void* arg) {
1743 reinterpret_cast<ConcurrentCopying*>(arg)->ProcessMarkStack();
1744}
1745
1746void ConcurrentCopying::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* reference) {
1747 heap_->GetReferenceProcessor()->DelayReferenceReferent(
1748 klass, reference, &IsHeapReferenceMarkedCallback, this);
1749}
1750
1751void ConcurrentCopying::ProcessReferences(Thread* self, bool concurrent) {
1752 TimingLogger::ScopedTiming split("ProcessReferences", GetTimings());
1753 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
1754 GetHeap()->GetReferenceProcessor()->ProcessReferences(
1755 concurrent, GetTimings(), GetCurrentIteration()->GetClearSoftReferences(),
1756 &IsHeapReferenceMarkedCallback, &MarkCallback, &ProcessMarkStackCallback, this);
1757}
1758
1759void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
1760 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
1761 region_space_->RevokeAllThreadLocalBuffers();
1762}
1763
Hiroshi Yamauchid5307ec2014-03-27 21:07:51 -07001764} // namespace collector
1765} // namespace gc
1766} // namespace art