blob: 0b7b2bd94f51a2faf3ce28f131a311c08875da64 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187 \
188{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194 \
195{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202 SHIFT_ENCODING_MAP(Rol, 0x0),
203 SHIFT_ENCODING_MAP(Ror, 0x1),
204 SHIFT_ENCODING_MAP(Rcl, 0x2),
205 SHIFT_ENCODING_MAP(Rcr, 0x3),
206 SHIFT_ENCODING_MAP(Sal, 0x4),
207 SHIFT_ENCODING_MAP(Shr, 0x5),
208 SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225 reg, reg_kind, reg_flags, \
226 mem, mem_kind, mem_flags, \
227 arr, arr_kind, arr_flags, imm, \
228 b_flags, hw_flags, w_flags, \
229 b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100249 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
250
Brian Carlstrom7940e442013-07-12 13:46:57 -0700251#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
252{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
253{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
254{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
255
256 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
257 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
258 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
259
260 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
261 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
262 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
263
264 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
265 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
266 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
267 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
268 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
269 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
270 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
271 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
272 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
273 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
274 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
278 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
279 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
286
287 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
288 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
289
290 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
291 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
292 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
293 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
294
295 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
296 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
297 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
298
299 // TODO: load/store?
300 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
301 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
302
303 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
304 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
305
306 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
307 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
308 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700309 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
310 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
311
312 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
313 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
314 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
315 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
316#undef EXT_0F_ENCODING_MAP
317
318 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
319 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
320 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
321 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
322 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
323 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
324 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
325 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
326 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700327 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700328
329 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
330 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
331 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
332};
333
334static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
335 size_t size = 0;
336 if (entry->skeleton.prefix1 > 0) {
337 ++size;
338 if (entry->skeleton.prefix2 > 0) {
339 ++size;
340 }
341 }
342 ++size; // opcode
343 if (entry->skeleton.opcode == 0x0F) {
344 ++size;
345 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
346 ++size;
347 }
348 }
349 ++size; // modrm
350 if (has_sib || base == rX86_SP) {
351 // SP requires a SIB byte.
352 ++size;
353 }
354 if (displacement != 0 || base == rBP) {
355 // BP requires an explicit displacement, even when it's 0.
356 if (entry->opcode != kX86Lea32RA) {
357 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
358 }
359 size += IS_SIMM8(displacement) ? 1 : 4;
360 }
361 size += entry->skeleton.immediate_bytes;
362 return size;
363}
364
365int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700366 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700367 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
368 switch (entry->kind) {
369 case kData:
370 return 4; // 4 bytes of data
371 case kNop:
372 return lir->operands[0]; // length of nop is sole operand
373 case kNullary:
374 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100375 case kRegOpcode: // lir operands - 0: reg
376 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700377 case kReg: // lir operands - 0: reg
378 return ComputeSize(entry, 0, 0, false);
379 case kMem: // lir operands - 0: base, 1: disp
380 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
381 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
382 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
383 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
384 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
385 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
386 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
387 case kThreadReg: // lir operands - 0: disp, 1: reg
388 return ComputeSize(entry, 0, lir->operands[0], false);
389 case kRegReg:
390 return ComputeSize(entry, 0, 0, false);
391 case kRegRegStore:
392 return ComputeSize(entry, 0, 0, false);
393 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
394 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
395 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
396 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
397 case kRegThread: // lir operands - 0: reg, 1: disp
398 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
399 case kRegImm: { // lir operands - 0: reg, 1: immediate
400 size_t size = ComputeSize(entry, 0, 0, false);
401 if (entry->skeleton.ax_opcode == 0) {
402 return size;
403 } else {
404 // AX opcodes don't require the modrm byte.
405 int reg = lir->operands[0];
406 return size - (reg == rAX ? 1 : 0);
407 }
408 }
409 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
410 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
411 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
412 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
413 case kThreadImm: // lir operands - 0: disp, 1: imm
414 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
415 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
416 return ComputeSize(entry, 0, 0, false);
417 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
418 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
419 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
420 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
421 case kMovRegImm: // lir operands - 0: reg, 1: immediate
422 return 1 + entry->skeleton.immediate_bytes;
423 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
424 // Shift by immediate one has a shorter opcode.
425 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
426 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
427 // Shift by immediate one has a shorter opcode.
428 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
429 (lir->operands[2] == 1 ? 1 : 0);
430 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
431 // Shift by immediate one has a shorter opcode.
432 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
433 (lir->operands[4] == 1 ? 1 : 0);
434 case kShiftRegCl:
435 return ComputeSize(entry, 0, 0, false);
436 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
437 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
438 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
439 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
440 case kRegCond: // lir operands - 0: reg, 1: cond
441 return ComputeSize(entry, 0, 0, false);
442 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
443 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
444 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
445 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
446 case kJcc:
447 if (lir->opcode == kX86Jcc8) {
448 return 2; // opcode + rel8
449 } else {
450 DCHECK(lir->opcode == kX86Jcc32);
451 return 6; // 2 byte opcode + rel32
452 }
453 case kJmp:
454 if (lir->opcode == kX86Jmp8) {
455 return 2; // opcode + rel8
456 } else if (lir->opcode == kX86Jmp32) {
457 return 5; // opcode + rel32
458 } else {
459 DCHECK(lir->opcode == kX86JmpR);
460 return 2; // opcode + modrm
461 }
462 case kCall:
463 switch (lir->opcode) {
464 case kX86CallR: return 2; // opcode modrm
465 case kX86CallM: // lir operands - 0: base, 1: disp
466 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
467 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
468 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
469 case kX86CallT: // lir operands - 0: disp
470 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
471 default:
472 break;
473 }
474 break;
475 case kPcRel:
476 if (entry->opcode == kX86PcRelLoadRA) {
477 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
478 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
479 } else {
480 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700481 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700482 }
483 case kMacro:
484 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
485 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
486 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
487 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
488 default:
489 break;
490 }
491 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
492 return 0;
493}
494
Vladimir Marko057c74a2013-12-03 15:20:45 +0000495void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
496 if (entry->skeleton.prefix1 != 0) {
497 code_buffer_.push_back(entry->skeleton.prefix1);
498 if (entry->skeleton.prefix2 != 0) {
499 code_buffer_.push_back(entry->skeleton.prefix2);
500 }
501 } else {
502 DCHECK_EQ(0, entry->skeleton.prefix2);
503 }
504}
505
506void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
507 code_buffer_.push_back(entry->skeleton.opcode);
508 if (entry->skeleton.opcode == 0x0F) {
509 code_buffer_.push_back(entry->skeleton.extra_opcode1);
510 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
511 code_buffer_.push_back(entry->skeleton.extra_opcode2);
512 } else {
513 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
514 }
515 } else {
516 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
517 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
518 }
519}
520
521void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
522 EmitPrefix(entry);
523 EmitOpcode(entry);
524}
525
Brian Carlstrom7940e442013-07-12 13:46:57 -0700526static uint8_t ModrmForDisp(int base, int disp) {
527 // BP requires an explicit disp, so do not omit it in the 0 case
528 if (disp == 0 && base != rBP) {
529 return 0;
530 } else if (IS_SIMM8(disp)) {
531 return 1;
532 } else {
533 return 2;
534 }
535}
536
Vladimir Marko057c74a2013-12-03 15:20:45 +0000537void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700538 // BP requires an explicit disp, so do not omit it in the 0 case
539 if (disp == 0 && base != rBP) {
540 return;
541 } else if (IS_SIMM8(disp)) {
542 code_buffer_.push_back(disp & 0xFF);
543 } else {
544 code_buffer_.push_back(disp & 0xFF);
545 code_buffer_.push_back((disp >> 8) & 0xFF);
546 code_buffer_.push_back((disp >> 16) & 0xFF);
547 code_buffer_.push_back((disp >> 24) & 0xFF);
548 }
549}
550
Vladimir Marko057c74a2013-12-03 15:20:45 +0000551void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
552 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700553 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000554 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700555 code_buffer_.push_back(modrm);
556 if (base == rX86_SP) {
557 // Special SIB for SP base
558 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
559 }
560 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700561}
562
Vladimir Marko057c74a2013-12-03 15:20:45 +0000563void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
564 int scale, int disp) {
565 DCHECK_LT(reg_or_opcode, 8);
566 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700567 code_buffer_.push_back(modrm);
568 DCHECK_LT(scale, 4);
569 DCHECK_LT(index, 8);
570 DCHECK_LT(base, 8);
571 uint8_t sib = (scale << 6) | (index << 3) | base;
572 code_buffer_.push_back(sib);
573 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700574}
575
Vladimir Marko057c74a2013-12-03 15:20:45 +0000576void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700577 switch (entry->skeleton.immediate_bytes) {
578 case 1:
579 DCHECK(IS_SIMM8(imm));
580 code_buffer_.push_back(imm & 0xFF);
581 break;
582 case 2:
583 DCHECK(IS_SIMM16(imm));
584 code_buffer_.push_back(imm & 0xFF);
585 code_buffer_.push_back((imm >> 8) & 0xFF);
586 break;
587 case 4:
588 code_buffer_.push_back(imm & 0xFF);
589 code_buffer_.push_back((imm >> 8) & 0xFF);
590 code_buffer_.push_back((imm >> 16) & 0xFF);
591 code_buffer_.push_back((imm >> 24) & 0xFF);
592 break;
593 default:
594 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
595 << ") for instruction: " << entry->name;
596 break;
597 }
598}
599
Vladimir Marko057c74a2013-12-03 15:20:45 +0000600void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
601 EmitPrefixAndOpcode(entry);
602 // There's no 3-byte instruction with +rd
603 DCHECK(entry->skeleton.opcode != 0x0F ||
604 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
605 DCHECK(!X86_FPREG(reg));
606 DCHECK_LT(reg, 8);
607 code_buffer_.back() += reg;
608 DCHECK_EQ(0, entry->skeleton.ax_opcode);
609 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
610}
611
612void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
613 EmitPrefixAndOpcode(entry);
614 if (X86_FPREG(reg)) {
615 reg = reg & X86_FP_REG_MASK;
616 }
617 if (reg >= 4) {
618 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
619 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
620 }
621 DCHECK_LT(reg, 8);
622 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
623 code_buffer_.push_back(modrm);
624 DCHECK_EQ(0, entry->skeleton.ax_opcode);
625 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
626}
627
628void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
629 EmitPrefix(entry);
630 code_buffer_.push_back(entry->skeleton.opcode);
631 DCHECK_NE(0x0F, entry->skeleton.opcode);
632 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
633 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
634 DCHECK_NE(rX86_SP, base);
635 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
636 DCHECK_EQ(0, entry->skeleton.ax_opcode);
637 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
638}
639
640void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
641 int scale, int disp) {
642 EmitPrefixAndOpcode(entry);
643 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
644 DCHECK_EQ(0, entry->skeleton.ax_opcode);
645 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
646}
647
648void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
649 uint8_t base, int disp, uint8_t reg) {
650 EmitPrefixAndOpcode(entry);
651 if (X86_FPREG(reg)) {
652 reg = reg & X86_FP_REG_MASK;
653 }
654 if (reg >= 4) {
655 DCHECK(strchr(entry->name, '8') == NULL ||
656 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
657 << entry->name << " " << static_cast<int>(reg)
658 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
659 }
660 EmitModrmDisp(reg, base, disp);
661 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
662 DCHECK_EQ(0, entry->skeleton.ax_opcode);
663 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
664}
665
666void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
667 uint8_t reg, uint8_t base, int disp) {
668 // Opcode will flip operands.
669 EmitMemReg(entry, base, disp, reg);
670}
671
672void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
673 int scale, int disp) {
674 EmitPrefixAndOpcode(entry);
675 if (X86_FPREG(reg)) {
676 reg = reg & X86_FP_REG_MASK;
677 }
678 EmitModrmSibDisp(reg, base, index, scale, disp);
679 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
680 DCHECK_EQ(0, entry->skeleton.ax_opcode);
681 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
682}
683
684void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
685 uint8_t reg) {
686 // Opcode will flip operands.
687 EmitRegArray(entry, reg, base, index, scale, disp);
688}
689
690void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
691 DCHECK_NE(entry->skeleton.prefix1, 0);
692 EmitPrefixAndOpcode(entry);
693 if (X86_FPREG(reg)) {
694 reg = reg & X86_FP_REG_MASK;
695 }
696 if (reg >= 4) {
697 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
698 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
699 }
700 DCHECK_LT(reg, 8);
701 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
702 code_buffer_.push_back(modrm);
703 code_buffer_.push_back(disp & 0xFF);
704 code_buffer_.push_back((disp >> 8) & 0xFF);
705 code_buffer_.push_back((disp >> 16) & 0xFF);
706 code_buffer_.push_back((disp >> 24) & 0xFF);
707 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
708 DCHECK_EQ(0, entry->skeleton.ax_opcode);
709 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
710}
711
712void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
713 EmitPrefixAndOpcode(entry);
714 if (X86_FPREG(reg1)) {
715 reg1 = reg1 & X86_FP_REG_MASK;
716 }
717 if (X86_FPREG(reg2)) {
718 reg2 = reg2 & X86_FP_REG_MASK;
719 }
720 DCHECK_LT(reg1, 8);
721 DCHECK_LT(reg2, 8);
722 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
723 code_buffer_.push_back(modrm);
724 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
725 DCHECK_EQ(0, entry->skeleton.ax_opcode);
726 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
727}
728
729void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
730 uint8_t reg1, uint8_t reg2, int32_t imm) {
731 EmitPrefixAndOpcode(entry);
732 if (X86_FPREG(reg1)) {
733 reg1 = reg1 & X86_FP_REG_MASK;
734 }
735 if (X86_FPREG(reg2)) {
736 reg2 = reg2 & X86_FP_REG_MASK;
737 }
738 DCHECK_LT(reg1, 8);
739 DCHECK_LT(reg2, 8);
740 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
741 code_buffer_.push_back(modrm);
742 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
743 DCHECK_EQ(0, entry->skeleton.ax_opcode);
744 EmitImm(entry, imm);
745}
746
Brian Carlstrom7940e442013-07-12 13:46:57 -0700747void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
748 if (entry->skeleton.prefix1 != 0) {
749 code_buffer_.push_back(entry->skeleton.prefix1);
750 if (entry->skeleton.prefix2 != 0) {
751 code_buffer_.push_back(entry->skeleton.prefix2);
752 }
753 } else {
754 DCHECK_EQ(0, entry->skeleton.prefix2);
755 }
756 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
757 code_buffer_.push_back(entry->skeleton.ax_opcode);
758 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000759 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700760 if (X86_FPREG(reg)) {
761 reg = reg & X86_FP_REG_MASK;
762 }
763 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
764 code_buffer_.push_back(modrm);
765 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000766 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700767}
768
769void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000770 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700771 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
772 code_buffer_.push_back(modrm);
773 code_buffer_.push_back(disp & 0xFF);
774 code_buffer_.push_back((disp >> 8) & 0xFF);
775 code_buffer_.push_back((disp >> 16) & 0xFF);
776 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000777 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700778 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
779}
780
781void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
782 DCHECK_LT(reg, 8);
783 code_buffer_.push_back(0xB8 + reg);
784 code_buffer_.push_back(imm & 0xFF);
785 code_buffer_.push_back((imm >> 8) & 0xFF);
786 code_buffer_.push_back((imm >> 16) & 0xFF);
787 code_buffer_.push_back((imm >> 24) & 0xFF);
788}
789
790void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000791 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700792 if (imm != 1) {
793 code_buffer_.push_back(entry->skeleton.opcode);
794 } else {
795 // Shorter encoding for 1 bit shift
796 code_buffer_.push_back(entry->skeleton.ax_opcode);
797 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000798 DCHECK_NE(0x0F, entry->skeleton.opcode);
799 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
800 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700801 if (reg >= 4) {
802 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
803 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
804 }
805 DCHECK_LT(reg, 8);
806 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
807 code_buffer_.push_back(modrm);
808 if (imm != 1) {
809 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
810 DCHECK(IS_SIMM8(imm));
811 code_buffer_.push_back(imm & 0xFF);
812 }
813}
814
815void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
816 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000817 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700818 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000819 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700820 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
821 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
822 DCHECK_LT(reg, 8);
823 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
824 code_buffer_.push_back(modrm);
825 DCHECK_EQ(0, entry->skeleton.ax_opcode);
826 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
827}
828
829void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
830 if (entry->skeleton.prefix1 != 0) {
831 code_buffer_.push_back(entry->skeleton.prefix1);
832 if (entry->skeleton.prefix2 != 0) {
833 code_buffer_.push_back(entry->skeleton.prefix2);
834 }
835 } else {
836 DCHECK_EQ(0, entry->skeleton.prefix2);
837 }
838 DCHECK_EQ(0, entry->skeleton.ax_opcode);
839 DCHECK_EQ(0x0F, entry->skeleton.opcode);
840 code_buffer_.push_back(0x0F);
841 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
842 code_buffer_.push_back(0x90 | condition);
843 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
844 DCHECK_LT(reg, 8);
845 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
846 code_buffer_.push_back(modrm);
847 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
848}
849
850void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
851 if (entry->opcode == kX86Jmp8) {
852 DCHECK(IS_SIMM8(rel));
853 code_buffer_.push_back(0xEB);
854 code_buffer_.push_back(rel & 0xFF);
855 } else if (entry->opcode == kX86Jmp32) {
856 code_buffer_.push_back(0xE9);
857 code_buffer_.push_back(rel & 0xFF);
858 code_buffer_.push_back((rel >> 8) & 0xFF);
859 code_buffer_.push_back((rel >> 16) & 0xFF);
860 code_buffer_.push_back((rel >> 24) & 0xFF);
861 } else {
862 DCHECK(entry->opcode == kX86JmpR);
863 code_buffer_.push_back(entry->skeleton.opcode);
864 uint8_t reg = static_cast<uint8_t>(rel);
865 DCHECK_LT(reg, 8);
866 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
867 code_buffer_.push_back(modrm);
868 }
869}
870
871void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
872 DCHECK_LT(cc, 16);
873 if (entry->opcode == kX86Jcc8) {
874 DCHECK(IS_SIMM8(rel));
875 code_buffer_.push_back(0x70 | cc);
876 code_buffer_.push_back(rel & 0xFF);
877 } else {
878 DCHECK(entry->opcode == kX86Jcc32);
879 code_buffer_.push_back(0x0F);
880 code_buffer_.push_back(0x80 | cc);
881 code_buffer_.push_back(rel & 0xFF);
882 code_buffer_.push_back((rel >> 8) & 0xFF);
883 code_buffer_.push_back((rel >> 16) & 0xFF);
884 code_buffer_.push_back((rel >> 24) & 0xFF);
885 }
886}
887
888void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000889 EmitPrefixAndOpcode(entry);
890 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700891 DCHECK_EQ(0, entry->skeleton.ax_opcode);
892 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
893}
894
895void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
896 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000897 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700898 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
899 code_buffer_.push_back(modrm);
900 code_buffer_.push_back(disp & 0xFF);
901 code_buffer_.push_back((disp >> 8) & 0xFF);
902 code_buffer_.push_back((disp >> 16) & 0xFF);
903 code_buffer_.push_back((disp >> 24) & 0xFF);
904 DCHECK_EQ(0, entry->skeleton.ax_opcode);
905 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
906}
907
908void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
909 int base_or_table, uint8_t index, int scale, int table_or_disp) {
910 int disp;
911 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700912 Mir2Lir::EmbeddedData *tab_rec =
913 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700914 disp = tab_rec->offset;
915 } else {
916 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700917 Mir2Lir::EmbeddedData *tab_rec =
918 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700919 disp = tab_rec->offset;
920 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000921 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700922 if (X86_FPREG(reg)) {
923 reg = reg & X86_FP_REG_MASK;
924 }
925 DCHECK_LT(reg, 8);
926 if (entry->opcode == kX86PcRelLoadRA) {
927 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000928 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700929 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
930 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
931 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
932 code_buffer_.push_back(modrm);
933 DCHECK_LT(scale, 4);
934 DCHECK_LT(index, 8);
935 DCHECK_LT(base_or_table, 8);
936 uint8_t base = static_cast<uint8_t>(base_or_table);
937 uint8_t sib = (scale << 6) | (index << 3) | base;
938 code_buffer_.push_back(sib);
939 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
940 } else {
941 code_buffer_.push_back(entry->skeleton.opcode + reg);
942 }
943 code_buffer_.push_back(disp & 0xFF);
944 code_buffer_.push_back((disp >> 8) & 0xFF);
945 code_buffer_.push_back((disp >> 16) & 0xFF);
946 code_buffer_.push_back((disp >> 24) & 0xFF);
947 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
948 DCHECK_EQ(0, entry->skeleton.ax_opcode);
949}
950
951void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
952 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
953 code_buffer_.push_back(0xE8); // call +0
954 code_buffer_.push_back(0);
955 code_buffer_.push_back(0);
956 code_buffer_.push_back(0);
957 code_buffer_.push_back(0);
958
959 DCHECK_LT(reg, 8);
960 code_buffer_.push_back(0x58 + reg); // pop reg
961
962 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
963}
964
965void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
966 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
967 << BuildInsnString(entry->fmt, lir, 0);
968 for (int i = 0; i < GetInsnSize(lir); ++i) {
969 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
970 }
971}
972
973/*
974 * Assemble the LIR into binary instruction format. Note that we may
975 * discover that pc-relative displacements may not fit the selected
976 * instruction. In those cases we will try to substitute a new code
977 * sequence or request that the trace be shortened and retried.
978 */
buzbee0d829482013-10-11 15:24:55 -0700979AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700980 LIR *lir;
981 AssemblerStatus res = kSuccess; // Assume success
982
983 const bool kVerbosePcFixup = false;
984 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -0700985 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700986 continue;
987 }
988
989 if (lir->flags.is_nop) {
990 continue;
991 }
992
buzbeeb48819d2013-09-14 16:15:25 -0700993 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700994 switch (lir->opcode) {
995 case kX86Jcc8: {
996 LIR *target_lir = lir->target;
997 DCHECK(target_lir != NULL);
998 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -0700999 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001000 if (IS_SIMM8(lir->operands[0])) {
1001 pc = lir->offset + 2 /* opcode + rel8 */;
1002 } else {
1003 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1004 }
buzbee0d829482013-10-11 15:24:55 -07001005 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001006 delta = target - pc;
1007 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1008 if (kVerbosePcFixup) {
1009 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1010 << " delta: " << delta << " old delta: " << lir->operands[0];
1011 }
1012 lir->opcode = kX86Jcc32;
1013 SetupResourceMasks(lir);
1014 res = kRetryAll;
1015 }
1016 if (kVerbosePcFixup) {
1017 LOG(INFO) << "Source:";
1018 DumpLIRInsn(lir, 0);
1019 LOG(INFO) << "Target:";
1020 DumpLIRInsn(target_lir, 0);
1021 LOG(INFO) << "Delta " << delta;
1022 }
1023 lir->operands[0] = delta;
1024 break;
1025 }
1026 case kX86Jcc32: {
1027 LIR *target_lir = lir->target;
1028 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001029 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1030 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001031 int delta = target - pc;
1032 if (kVerbosePcFixup) {
1033 LOG(INFO) << "Source:";
1034 DumpLIRInsn(lir, 0);
1035 LOG(INFO) << "Target:";
1036 DumpLIRInsn(target_lir, 0);
1037 LOG(INFO) << "Delta " << delta;
1038 }
1039 lir->operands[0] = delta;
1040 break;
1041 }
1042 case kX86Jmp8: {
1043 LIR *target_lir = lir->target;
1044 DCHECK(target_lir != NULL);
1045 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001046 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001047 if (IS_SIMM8(lir->operands[0])) {
1048 pc = lir->offset + 2 /* opcode + rel8 */;
1049 } else {
1050 pc = lir->offset + 5 /* opcode + rel32 */;
1051 }
buzbee0d829482013-10-11 15:24:55 -07001052 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001053 delta = target - pc;
1054 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1055 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001056 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001057 if (kVerbosePcFixup) {
1058 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1059 }
1060 res = kRetryAll;
1061 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1062 if (kVerbosePcFixup) {
1063 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1064 }
1065 lir->opcode = kX86Jmp32;
1066 SetupResourceMasks(lir);
1067 res = kRetryAll;
1068 }
1069 lir->operands[0] = delta;
1070 break;
1071 }
1072 case kX86Jmp32: {
1073 LIR *target_lir = lir->target;
1074 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001075 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1076 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001077 int delta = target - pc;
1078 lir->operands[0] = delta;
1079 break;
1080 }
1081 default:
1082 break;
1083 }
1084 }
1085
1086 /*
1087 * If one of the pc-relative instructions expanded we'll have
1088 * to make another pass. Don't bother to fully assemble the
1089 * instruction.
1090 */
1091 if (res != kSuccess) {
1092 continue;
1093 }
1094 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1095 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1096 size_t starting_cbuf_size = code_buffer_.size();
1097 switch (entry->kind) {
1098 case kData: // 4 bytes of data
1099 code_buffer_.push_back(lir->operands[0]);
1100 break;
1101 case kNullary: // 1 byte of opcode
1102 DCHECK_EQ(0, entry->skeleton.prefix1);
1103 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001104 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001105 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1106 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1107 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1108 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001109 case kRegOpcode: // lir operands - 0: reg
1110 EmitOpRegOpcode(entry, lir->operands[0]);
1111 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001112 case kReg: // lir operands - 0: reg
1113 EmitOpReg(entry, lir->operands[0]);
1114 break;
1115 case kMem: // lir operands - 0: base, 1: disp
1116 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1117 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001118 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1119 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1120 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001121 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1122 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1123 break;
1124 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1125 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1126 lir->operands[3], lir->operands[4]);
1127 break;
1128 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1129 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1130 break;
1131 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1132 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1133 lir->operands[3], lir->operands[4]);
1134 break;
1135 case kRegThread: // lir operands - 0: reg, 1: disp
1136 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1137 break;
1138 case kRegReg: // lir operands - 0: reg1, 1: reg2
1139 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1140 break;
1141 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1142 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1143 break;
1144 case kRegRegImm:
1145 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1146 break;
1147 case kRegImm: // lir operands - 0: reg, 1: immediate
1148 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1149 break;
1150 case kThreadImm: // lir operands - 0: disp, 1: immediate
1151 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1152 break;
1153 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1154 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1155 break;
1156 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1157 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1158 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001159 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001160 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1161 break;
1162 case kRegCond: // lir operands - 0: reg, 1: condition
1163 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1164 break;
1165 case kJmp: // lir operands - 0: rel
1166 EmitJmp(entry, lir->operands[0]);
1167 break;
1168 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1169 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1170 break;
1171 case kCall:
1172 switch (entry->opcode) {
1173 case kX86CallM: // lir operands - 0: base, 1: disp
1174 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1175 break;
1176 case kX86CallT: // lir operands - 0: disp
1177 EmitCallThread(entry, lir->operands[0]);
1178 break;
1179 default:
1180 EmitUnimplemented(entry, lir);
1181 break;
1182 }
1183 break;
1184 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1185 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1186 lir->operands[3], lir->operands[4]);
1187 break;
1188 case kMacro:
1189 EmitMacro(entry, lir->operands[0], lir->offset);
1190 break;
1191 default:
1192 EmitUnimplemented(entry, lir);
1193 break;
1194 }
1195 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1196 code_buffer_.size() - starting_cbuf_size)
1197 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1198 }
1199 return res;
1200}
1201
buzbeeb48819d2013-09-14 16:15:25 -07001202// LIR offset assignment.
1203// TODO: consolidate w/ Arm assembly mechanism.
1204int X86Mir2Lir::AssignInsnOffsets() {
1205 LIR* lir;
1206 int offset = 0;
1207
1208 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1209 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001210 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001211 if (!lir->flags.is_nop) {
1212 offset += lir->flags.size;
1213 }
1214 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1215 if (offset & 0x2) {
1216 offset += 2;
1217 lir->operands[0] = 1;
1218 } else {
1219 lir->operands[0] = 0;
1220 }
1221 }
1222 /* Pseudo opcodes don't consume space */
1223 }
1224 return offset;
1225}
1226
1227/*
1228 * Walk the compilation unit and assign offsets to instructions
1229 * and literals and compute the total size of the compiled unit.
1230 * TODO: consolidate w/ Arm assembly mechanism.
1231 */
1232void X86Mir2Lir::AssignOffsets() {
1233 int offset = AssignInsnOffsets();
1234
1235 /* Const values have to be word aligned */
1236 offset = (offset + 3) & ~3;
1237
1238 /* Set up offsets for literals */
1239 data_offset_ = offset;
1240
1241 offset = AssignLiteralOffset(offset);
1242
1243 offset = AssignSwitchTablesOffset(offset);
1244
1245 offset = AssignFillArrayDataOffset(offset);
1246
1247 total_size_ = offset;
1248}
1249
1250/*
1251 * Go over each instruction in the list and calculate the offset from the top
1252 * before sending them off to the assembler. If out-of-range branch distance is
1253 * seen rearrange the instructions a bit to correct it.
1254 * TODO: consolidate w/ Arm assembly mechanism.
1255 */
1256void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001257 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001258 AssignOffsets();
1259 int assembler_retries = 0;
1260 /*
1261 * Assemble here. Note that we generate code with optimistic assumptions
1262 * and if found now to work, we'll have to redo the sequence and retry.
1263 */
1264
1265 while (true) {
1266 AssemblerStatus res = AssembleInstructions(0);
1267 if (res == kSuccess) {
1268 break;
1269 } else {
1270 assembler_retries++;
1271 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1272 CodegenDump();
1273 LOG(FATAL) << "Assembler error - too many retries";
1274 }
1275 // Redo offsets and try again
1276 AssignOffsets();
1277 code_buffer_.clear();
1278 }
1279 }
1280
1281 // Install literals
1282 InstallLiteralPools();
1283
1284 // Install switch tables
1285 InstallSwitchTables();
1286
1287 // Install fill array data
1288 InstallFillArrayData();
1289
1290 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001291 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001292 CreateMappingTables();
1293
buzbeea61f4952013-08-23 14:27:06 -07001294 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001295 CreateNativeGcMap();
1296}
1297
Brian Carlstrom7940e442013-07-12 13:46:57 -07001298} // namespace art