blob: 5900990587e0bab837ecfe65e41b7d4a115a377b [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
193
194 // The kMirOpSelect has two variants, one for constants and one for moves.
195 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
196
197 if (is_constant_case) {
198 int true_val = mir->dalvikInsn.vB;
199 int false_val = mir->dalvikInsn.vC;
200 rl_result = EvalLoc(rl_dest, kCoreReg, true);
201
202 /*
203 * 1) When the true case is zero and result_reg is not same as src_reg:
204 * xor result_reg, result_reg
205 * cmp $0, src_reg
206 * mov t1, $false_case
207 * cmovnz result_reg, t1
208 * 2) When the false case is zero and result_reg is not same as src_reg:
209 * xor result_reg, result_reg
210 * cmp $0, src_reg
211 * mov t1, $true_case
212 * cmovz result_reg, t1
213 * 3) All other cases (we do compare first to set eflags):
214 * cmp $0, src_reg
215 * mov result_reg, $true_case
216 * mov t1, $false_case
217 * cmovnz result_reg, t1
218 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000219 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800220 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
221 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
222 const bool catch_all_case = !(true_zero_case || false_zero_case);
223
224 if (true_zero_case || false_zero_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000225 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800226 }
227
228 if (true_zero_case || false_zero_case || catch_all_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000229 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800230 }
231
232 if (catch_all_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000233 OpRegImm(kOpMov, rl_result.reg.GetReg(), true_val);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800234 }
235
236 if (true_zero_case || false_zero_case || catch_all_case) {
237 int immediateForTemp = false_zero_case ? true_val : false_val;
238 int temp1_reg = AllocTemp();
239 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
240
241 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000242 OpCondRegReg(kOpCmov, cc, rl_result.reg.GetReg(), temp1_reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800243
244 FreeTemp(temp1_reg);
245 }
246 } else {
247 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
248 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
249 rl_true = LoadValue(rl_true, kCoreReg);
250 rl_false = LoadValue(rl_false, kCoreReg);
251 rl_result = EvalLoc(rl_dest, kCoreReg, true);
252
253 /*
254 * 1) When true case is already in place:
255 * cmp $0, src_reg
256 * cmovnz result_reg, false_reg
257 * 2) When false case is already in place:
258 * cmp $0, src_reg
259 * cmovz result_reg, true_reg
260 * 3) When neither cases are in place:
261 * cmp $0, src_reg
262 * mov result_reg, true_reg
263 * cmovnz result_reg, false_reg
264 */
265
266 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000267 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800268
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000269 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
270 OpCondRegReg(kOpCmov, kCondNe, rl_result.reg.GetReg(), rl_false.reg.GetReg());
271 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
272 OpCondRegReg(kOpCmov, kCondEq, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800273 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000274 OpRegCopy(rl_result.reg.GetReg(), rl_true.reg.GetReg());
275 OpCondRegReg(kOpCmov, kCondNe, rl_result.reg.GetReg(), rl_false.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800276 }
277 }
278
279 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700280}
281
282void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700283 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700284 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
285 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000286 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800287
288 if (rl_src1.is_const) {
289 std::swap(rl_src1, rl_src2);
290 ccode = FlipComparisonOrder(ccode);
291 }
292 if (rl_src2.is_const) {
293 // Do special compare/branch against simple const operand
294 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
295 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
296 return;
297 }
298
Brian Carlstrom7940e442013-07-12 13:46:57 -0700299 FlushAllRegs();
300 LockCallTemps(); // Prepare for explicit register usage
301 LoadValueDirectWideFixed(rl_src1, r0, r1);
302 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700303 // Swap operands and condition code to prevent use of zero flag.
304 if (ccode == kCondLe || ccode == kCondGt) {
305 // Compute (r3:r2) = (r3:r2) - (r1:r0)
306 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
307 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
308 } else {
309 // Compute (r1:r0) = (r1:r0) - (r3:r2)
310 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
311 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
312 }
313 switch (ccode) {
314 case kCondEq:
315 case kCondNe:
316 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
317 break;
318 case kCondLe:
319 ccode = kCondGe;
320 break;
321 case kCondGt:
322 ccode = kCondLt;
323 break;
324 case kCondLt:
325 case kCondGe:
326 break;
327 default:
328 LOG(FATAL) << "Unexpected ccode: " << ccode;
329 }
330 OpCondBranch(ccode, taken);
331}
332
Mark Mendell412d4f82013-12-18 13:32:36 -0800333void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
334 int64_t val, ConditionCode ccode) {
335 int32_t val_lo = Low32Bits(val);
336 int32_t val_hi = High32Bits(val);
337 LIR* taken = &block_label_list_[bb->taken];
338 LIR* not_taken = &block_label_list_[bb->fall_through];
339 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000340 int32_t low_reg = rl_src1.reg.GetReg();
341 int32_t high_reg = rl_src1.reg.GetHighReg();
Mark Mendell412d4f82013-12-18 13:32:36 -0800342
343 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
344 int t_reg = AllocTemp();
345 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
346 FreeTemp(t_reg);
347 OpCondBranch(ccode, taken);
348 return;
349 }
350
351 OpRegImm(kOpCmp, high_reg, val_hi);
352 switch (ccode) {
353 case kCondEq:
354 case kCondNe:
355 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
356 break;
357 case kCondLt:
358 OpCondBranch(kCondLt, taken);
359 OpCondBranch(kCondGt, not_taken);
360 ccode = kCondUlt;
361 break;
362 case kCondLe:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondLs;
366 break;
367 case kCondGt:
368 OpCondBranch(kCondGt, taken);
369 OpCondBranch(kCondLt, not_taken);
370 ccode = kCondHi;
371 break;
372 case kCondGe:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondUge;
376 break;
377 default:
378 LOG(FATAL) << "Unexpected ccode: " << ccode;
379 }
380 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
381}
382
Mark Mendell2bf31e62014-01-23 12:13:40 -0800383void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
384 // It does not make sense to calculate magic and shift for zero divisor.
385 DCHECK_NE(divisor, 0);
386
387 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
388 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
389 * The magic number M and shift S can be calculated in the following way:
390 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
391 * where divisor(d) >=2.
392 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
393 * where divisor(d) <= -2.
394 * Thus nc can be calculated like:
395 * nc = 2^31 + 2^31 % d - 1, where d >= 2
396 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
397 *
398 * So the shift p is the smallest p satisfying
399 * 2^p > nc * (d - 2^p % d), where d >= 2
400 * 2^p > nc * (d + 2^p % d), where d <= -2.
401 *
402 * the magic number M is calcuated by
403 * M = (2^p + d - 2^p % d) / d, where d >= 2
404 * M = (2^p - d - 2^p % d) / d, where d <= -2.
405 *
406 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
407 * the shift number S.
408 */
409
410 int32_t p = 31;
411 const uint32_t two31 = 0x80000000U;
412
413 // Initialize the computations.
414 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
415 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
416 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
417 uint32_t quotient1 = two31 / abs_nc;
418 uint32_t remainder1 = two31 % abs_nc;
419 uint32_t quotient2 = two31 / abs_d;
420 uint32_t remainder2 = two31 % abs_d;
421
422 /*
423 * To avoid handling both positive and negative divisor, Hacker's Delight
424 * introduces a method to handle these 2 cases together to avoid duplication.
425 */
426 uint32_t delta;
427 do {
428 p++;
429 quotient1 = 2 * quotient1;
430 remainder1 = 2 * remainder1;
431 if (remainder1 >= abs_nc) {
432 quotient1++;
433 remainder1 = remainder1 - abs_nc;
434 }
435 quotient2 = 2 * quotient2;
436 remainder2 = 2 * remainder2;
437 if (remainder2 >= abs_d) {
438 quotient2++;
439 remainder2 = remainder2 - abs_d;
440 }
441 delta = abs_d - remainder2;
442 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
443
444 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
445 shift = p - 32;
446}
447
Brian Carlstrom7940e442013-07-12 13:46:57 -0700448RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700449 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700450 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
451 return rl_dest;
452}
453
Mark Mendell2bf31e62014-01-23 12:13:40 -0800454RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
455 int imm, bool is_div) {
456 // Use a multiply (and fixup) to perform an int div/rem by a constant.
457
458 // We have to use fixed registers, so flush all the temps.
459 FlushAllRegs();
460 LockCallTemps(); // Prepare for explicit register usage.
461
462 // Assume that the result will be in EDX.
463 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000464 RegStorage(RegStorage::k32BitSolo, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800465
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700466 // handle div/rem by 1 special case.
467 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800468 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700469 // x / 1 == x.
470 StoreValue(rl_result, rl_src);
471 } else {
472 // x % 1 == 0.
473 LoadConstantNoClobber(r0, 0);
474 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000475 rl_result.reg.SetReg(r0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700476 }
477 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
478 if (is_div) {
479 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800480 LoadValueDirectFixed(rl_src, r0);
481 OpRegImm(kOpCmp, r0, 0x80000000);
482 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
483
484 // for x != MIN_INT, x / -1 == -x.
485 NewLIR1(kX86Neg32R, r0);
486
487 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
488 // The target for cmp/jmp above.
489 minint_branch->target = NewLIR0(kPseudoTargetLabel);
490 // EAX already contains the right value (0x80000000),
491 branch_around->target = NewLIR0(kPseudoTargetLabel);
492 } else {
493 // x % -1 == 0.
494 LoadConstantNoClobber(r0, 0);
495 }
496 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000497 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800498 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700499 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800500 // Use H.S.Warren's Hacker's Delight Chapter 10 and
501 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
502 int magic, shift;
503 CalculateMagicAndShift(imm, magic, shift);
504
505 /*
506 * For imm >= 2,
507 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
508 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
509 * For imm <= -2,
510 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
511 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
512 * We implement this algorithm in the following way:
513 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
514 * 2. if imm > 0 and magic < 0, add numerator to EDX
515 * if imm < 0 and magic > 0, sub numerator from EDX
516 * 3. if S !=0, SAR S bits for EDX
517 * 4. add 1 to EDX if EDX < 0
518 * 5. Thus, EDX is the quotient
519 */
520
521 // Numerator into EAX.
522 int numerator_reg = -1;
523 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
524 // We will need the value later.
525 if (rl_src.location == kLocPhysReg) {
526 // We can use it directly.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000527 DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
528 numerator_reg = rl_src.reg.GetReg();
Mark Mendell2bf31e62014-01-23 12:13:40 -0800529 } else {
530 LoadValueDirectFixed(rl_src, r1);
531 numerator_reg = r1;
532 }
533 OpRegCopy(r0, numerator_reg);
534 } else {
535 // Only need this once. Just put it into EAX.
536 LoadValueDirectFixed(rl_src, r0);
537 }
538
539 // EDX = magic.
540 LoadConstantNoClobber(r2, magic);
541
542 // EDX:EAX = magic & dividend.
543 NewLIR1(kX86Imul32DaR, r2);
544
545 if (imm > 0 && magic < 0) {
546 // Add numerator to EDX.
547 DCHECK_NE(numerator_reg, -1);
548 NewLIR2(kX86Add32RR, r2, numerator_reg);
549 } else if (imm < 0 && magic > 0) {
550 DCHECK_NE(numerator_reg, -1);
551 NewLIR2(kX86Sub32RR, r2, numerator_reg);
552 }
553
554 // Do we need the shift?
555 if (shift != 0) {
556 // Shift EDX by 'shift' bits.
557 NewLIR2(kX86Sar32RI, r2, shift);
558 }
559
560 // Add 1 to EDX if EDX < 0.
561
562 // Move EDX to EAX.
563 OpRegCopy(r0, r2);
564
565 // Move sign bit to bit 0, zeroing the rest.
566 NewLIR2(kX86Shr32RI, r2, 31);
567
568 // EDX = EDX + EAX.
569 NewLIR2(kX86Add32RR, r2, r0);
570
571 // Quotient is in EDX.
572 if (!is_div) {
573 // We need to compute the remainder.
574 // Remainder is divisor - (quotient * imm).
575 DCHECK_NE(numerator_reg, -1);
576 OpRegCopy(r0, numerator_reg);
577
578 // EAX = numerator * imm.
579 OpRegRegImm(kOpMul, r2, r2, imm);
580
581 // EDX -= EAX.
582 NewLIR2(kX86Sub32RR, r0, r2);
583
584 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000585 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800586 }
587 }
588
589 return rl_result;
590}
591
Brian Carlstrom7940e442013-07-12 13:46:57 -0700592RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700593 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700594 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
595 return rl_dest;
596}
597
Mark Mendell2bf31e62014-01-23 12:13:40 -0800598RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
599 RegLocation rl_src2, bool is_div, bool check_zero) {
600 // We have to use fixed registers, so flush all the temps.
601 FlushAllRegs();
602 LockCallTemps(); // Prepare for explicit register usage.
603
604 // Load LHS into EAX.
605 LoadValueDirectFixed(rl_src1, r0);
606
607 // Load RHS into EBX.
608 LoadValueDirectFixed(rl_src2, r1);
609
610 // Copy LHS sign bit into EDX.
611 NewLIR0(kx86Cdq32Da);
612
613 if (check_zero) {
614 // Handle division by zero case.
615 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
616 }
617
618 // Have to catch 0x80000000/-1 case, or we will get an exception!
619 OpRegImm(kOpCmp, r1, -1);
620 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
621
622 // RHS is -1.
623 OpRegImm(kOpCmp, r0, 0x80000000);
624 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
625
626 // In 0x80000000/-1 case.
627 if (!is_div) {
628 // For DIV, EAX is already right. For REM, we need EDX 0.
629 LoadConstantNoClobber(r2, 0);
630 }
631 LIR* done = NewLIR1(kX86Jmp8, 0);
632
633 // Expected case.
634 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
635 minint_branch->target = minus_one_branch->target;
636 NewLIR1(kX86Idivmod32DaR, r1);
637 done->target = NewLIR0(kPseudoTargetLabel);
638
639 // Result is in EAX for div and EDX for rem.
640 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000641 RegStorage(RegStorage::k32BitSolo, r0), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800642 if (!is_div) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000643 rl_result.reg.SetReg(r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800644 }
645 return rl_result;
646}
647
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700648bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700649 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800650
651 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700652 RegLocation rl_src1 = info->args[0];
653 RegLocation rl_src2 = info->args[1];
654 rl_src1 = LoadValue(rl_src1, kCoreReg);
655 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800656
Brian Carlstrom7940e442013-07-12 13:46:57 -0700657 RegLocation rl_dest = InlineTarget(info);
658 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800659
660 /*
661 * If the result register is the same as the second element, then we need to be careful.
662 * The reason is that the first copy will inadvertently clobber the second element with
663 * the first one thus yielding the wrong result. Thus we do a swap in that case.
664 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000665 if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800666 std::swap(rl_src1, rl_src2);
667 }
668
669 // Pick the first integer as min/max.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000670 OpRegCopy(rl_result.reg.GetReg(), rl_src1.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800671
672 // If the integers are both in the same register, then there is nothing else to do
673 // because they are equal and we have already moved one into the result.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000674 if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800675 // It is possible we didn't pick correctly so do the actual comparison now.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000676 OpRegReg(kOpCmp, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800677
678 // Conditionally move the other integer into the destination register.
679 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000680 OpCondRegReg(kOpCmov, condition_code, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800681 }
682
Brian Carlstrom7940e442013-07-12 13:46:57 -0700683 StoreValue(rl_dest, rl_result);
684 return true;
685}
686
Vladimir Markoe508a202013-11-04 15:24:22 +0000687bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
688 RegLocation rl_src_address = info->args[0]; // long address
689 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800690 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000691 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
692 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
693 if (size == kLong) {
694 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000695 LoadBaseDispWide(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000696 StoreValueWide(rl_dest, rl_result);
697 } else {
698 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
699 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000700 LoadBaseDisp(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), size, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000701 StoreValue(rl_dest, rl_result);
702 }
703 return true;
704}
705
706bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
707 RegLocation rl_src_address = info->args[0]; // long address
708 rl_src_address.wide = 0; // ignore high half in info->args[1]
709 RegLocation rl_src_value = info->args[2]; // [size] value
710 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
711 if (size == kLong) {
712 // Unaligned access is allowed on x86.
713 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000714 StoreBaseDispWide(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
Vladimir Markoe508a202013-11-04 15:24:22 +0000715 } else {
716 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
717 // Unaligned access is allowed on x86.
718 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000719 StoreBaseDisp(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), size);
Vladimir Markoe508a202013-11-04 15:24:22 +0000720 }
721 return true;
722}
723
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700724void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700725 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
726}
727
Ian Rogers468532e2013-08-05 10:56:33 -0700728void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
729 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700730}
731
Vladimir Marko1c282e22013-11-21 14:49:47 +0000732bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000733 DCHECK_EQ(cu_->instruction_set, kX86);
734 // Unused - RegLocation rl_src_unsafe = info->args[0];
735 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
736 RegLocation rl_src_offset = info->args[2]; // long low
737 rl_src_offset.wide = 0; // ignore high half in info->args[3]
738 RegLocation rl_src_expected = info->args[4]; // int, long or Object
739 // If is_long, high half is in info->args[5]
740 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
741 // If is_long, high half is in info->args[7]
742
743 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000744 FlushAllRegs();
745 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000746 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
747 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000748 NewLIR1(kX86Push32R, rDI);
749 MarkTemp(rDI);
750 LockTemp(rDI);
751 NewLIR1(kX86Push32R, rSI);
752 MarkTemp(rSI);
753 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000754 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
755 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
756 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000757 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
758 FreeTemp(rSI);
759 UnmarkTemp(rSI);
760 NewLIR1(kX86Pop32R, rSI);
761 FreeTemp(rDI);
762 UnmarkTemp(rDI);
763 NewLIR1(kX86Pop32R, rDI);
764 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000765 } else {
766 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
767 FlushReg(r0);
768 LockTemp(r0);
769
770 // Release store semantics, get the barrier out of the way. TODO: revisit
771 GenMemBarrier(kStoreLoad);
772
773 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
774 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
775
776 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
777 // Mark card for object assuming new value is stored.
778 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000779 MarkGCCard(rl_new_value.reg.GetReg(), rl_object.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000780 LockTemp(r0);
781 }
782
783 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
784 LoadValueDirect(rl_src_expected, r0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000785 NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000786
787 FreeTemp(r0);
788 }
789
790 // Convert ZF to boolean
791 RegLocation rl_dest = InlineTarget(info); // boolean place for result
792 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000793 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
794 NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000795 StoreValue(rl_dest, rl_result);
796 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700797}
798
799LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800800 CHECK(base_of_code_ != nullptr);
801
802 // Address the start of the method
803 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
804 LoadValueDirectFixed(rl_method, reg);
805 store_method_addr_used_ = true;
806
807 // Load the proper value from the literal area.
808 // We don't know the proper offset for the value, so pick one that will force
809 // 4 byte offset. We will fix this up in the assembler later to have the right
810 // value.
811 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
812 res->target = target;
813 res->flags.fixup = kFixupLoad;
814 SetMemRefType(res, true, kLiteral);
815 store_method_addr_used_ = true;
816 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700817}
818
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700819LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700820 LOG(FATAL) << "Unexpected use of OpVldm for x86";
821 return NULL;
822}
823
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700824LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700825 LOG(FATAL) << "Unexpected use of OpVstm for x86";
826 return NULL;
827}
828
829void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
830 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700831 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700832 int t_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000833 OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), second_bit - first_bit);
834 OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), t_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700835 FreeTemp(t_reg);
836 if (first_bit != 0) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000837 OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_result.reg.GetReg(), first_bit);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700838 }
839}
840
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700841void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800842 // We are not supposed to clobber either of the provided registers, so allocate
843 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700844 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800845
846 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700847 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800848
849 // In case of zero, throw ArithmeticException.
850 GenCheck(kCondEq, kThrowDivZero);
851
852 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700853 FreeTemp(t_reg);
854}
855
856// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700857LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700858 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700859 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
860}
861
862// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700863LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700864 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800865 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700866}
867
buzbee11b63d12013-08-27 07:34:17 -0700868bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700869 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700870 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
871 return false;
872}
873
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700874LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700875 LOG(FATAL) << "Unexpected use of OpIT in x86";
876 return NULL;
877}
878
Mark Mendell4708dcd2014-01-22 09:05:18 -0800879void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
880 switch (val) {
881 case 0:
882 NewLIR2(kX86Xor32RR, dest, dest);
883 break;
884 case 1:
885 OpRegCopy(dest, src);
886 break;
887 default:
888 OpRegRegImm(kOpMul, dest, src, val);
889 break;
890 }
891}
892
893void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
894 LIR *m;
895 switch (val) {
896 case 0:
897 NewLIR2(kX86Xor32RR, dest, dest);
898 break;
899 case 1:
900 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
901 break;
902 default:
903 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
904 displacement, val);
905 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
906 break;
907 }
908}
909
Mark Mendelle02d48f2014-01-15 11:19:23 -0800910void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700911 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800912 if (rl_src1.is_const) {
913 std::swap(rl_src1, rl_src2);
914 }
915 // Are we multiplying by a constant?
916 if (rl_src2.is_const) {
917 // Do special compare/branch against simple const operand
918 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
919 if (val == 0) {
920 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000921 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
922 OpRegReg(kOpXor, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800923 StoreValueWide(rl_dest, rl_result);
924 return;
925 } else if (val == 1) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800926 StoreValueWide(rl_dest, rl_src1);
927 return;
928 } else if (val == 2) {
929 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
930 return;
931 } else if (IsPowerOfTwo(val)) {
932 int shift_amount = LowestSetBit(val);
933 if (!BadOverlap(rl_src1, rl_dest)) {
934 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
935 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
936 rl_src1, shift_amount);
937 StoreValueWide(rl_dest, rl_result);
938 return;
939 }
940 }
941
942 // Okay, just bite the bullet and do it.
943 int32_t val_lo = Low32Bits(val);
944 int32_t val_hi = High32Bits(val);
945 FlushAllRegs();
946 LockCallTemps(); // Prepare for explicit register usage.
947 rl_src1 = UpdateLocWide(rl_src1);
948 bool src1_in_reg = rl_src1.location == kLocPhysReg;
949 int displacement = SRegOffset(rl_src1.s_reg_low);
950
951 // ECX <- 1H * 2L
952 // EAX <- 1L * 2H
953 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000954 GenImulRegImm(r1, rl_src1.reg.GetHighReg(), val_lo);
955 GenImulRegImm(r0, rl_src1.reg.GetReg(), val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800956 } else {
957 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
958 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
959 }
960
961 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
962 NewLIR2(kX86Add32RR, r1, r0);
963
964 // EAX <- 2L
965 LoadConstantNoClobber(r0, val_lo);
966
967 // EDX:EAX <- 2L * 1L (double precision)
968 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000969 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800970 } else {
971 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
972 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
973 true /* is_load */, true /* is_64bit */);
974 }
975
976 // EDX <- EDX + ECX (add high words)
977 NewLIR2(kX86Add32RR, r2, r1);
978
979 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000980 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
981 RegStorage(RegStorage::k64BitPair, r0, r2),
Mark Mendell4708dcd2014-01-22 09:05:18 -0800982 INVALID_SREG, INVALID_SREG};
983 StoreValueWide(rl_dest, rl_result);
984 return;
985 }
986
987 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -0800988 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
989 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
990 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
991
Mark Mendell4708dcd2014-01-22 09:05:18 -0800992 FlushAllRegs();
993 LockCallTemps(); // Prepare for explicit register usage.
994 rl_src1 = UpdateLocWide(rl_src1);
995 rl_src2 = UpdateLocWide(rl_src2);
996
997 // At this point, the VRs are in their home locations.
998 bool src1_in_reg = rl_src1.location == kLocPhysReg;
999 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1000
1001 // ECX <- 1H
1002 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001003 NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001004 } else {
1005 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1006 kWord, GetSRegHi(rl_src1.s_reg_low));
1007 }
1008
Mark Mendellde99bba2014-02-14 12:15:02 -08001009 if (is_square) {
1010 // Take advantage of the fact that the values are the same.
1011 // ECX <- ECX * 2L (1H * 2L)
1012 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001013 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001014 } else {
1015 int displacement = SRegOffset(rl_src2.s_reg_low);
1016 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1017 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1018 true /* is_load */, true /* is_64bit */);
1019 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001020
Mark Mendellde99bba2014-02-14 12:15:02 -08001021 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1022 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001023 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001024 // EAX <- 2H
1025 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001026 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001027 } else {
1028 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1029 kWord, GetSRegHi(rl_src2.s_reg_low));
1030 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001031
Mark Mendellde99bba2014-02-14 12:15:02 -08001032 // EAX <- EAX * 1L (2H * 1L)
1033 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001034 NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001035 } else {
1036 int displacement = SRegOffset(rl_src1.s_reg_low);
1037 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1038 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1039 true /* is_load */, true /* is_64bit */);
1040 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001041
Mark Mendellde99bba2014-02-14 12:15:02 -08001042 // ECX <- ECX * 2L (1H * 2L)
1043 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001044 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001045 } else {
1046 int displacement = SRegOffset(rl_src2.s_reg_low);
1047 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1048 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1049 true /* is_load */, true /* is_64bit */);
1050 }
1051
1052 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1053 NewLIR2(kX86Add32RR, r1, r0);
1054 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001055
1056 // EAX <- 2L
1057 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001058 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001059 } else {
1060 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1061 kWord, rl_src2.s_reg_low);
1062 }
1063
1064 // EDX:EAX <- 2L * 1L (double precision)
1065 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001066 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001067 } else {
1068 int displacement = SRegOffset(rl_src1.s_reg_low);
1069 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1070 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1071 true /* is_load */, true /* is_64bit */);
1072 }
1073
1074 // EDX <- EDX + ECX (add high words)
1075 NewLIR2(kX86Add32RR, r2, r1);
1076
1077 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001078 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1079 RegStorage(RegStorage::k64BitPair, r0, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell4708dcd2014-01-22 09:05:18 -08001080 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001081}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001082
1083void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1084 Instruction::Code op) {
1085 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1086 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1087 if (rl_src.location == kLocPhysReg) {
1088 // Both operands are in registers.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001089 if (rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001090 // The registers are the same, so we would clobber it before the use.
1091 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001092 OpRegCopy(temp_reg, rl_dest.reg.GetReg());
1093 rl_src.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001094 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001095 NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001096
1097 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001098 NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1099 FreeTemp(rl_src.reg.GetReg());
1100 FreeTemp(rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001101 return;
1102 }
1103
1104 // RHS is in memory.
1105 DCHECK((rl_src.location == kLocDalvikFrame) ||
1106 (rl_src.location == kLocCompilerTemp));
1107 int rBase = TargetReg(kSp);
1108 int displacement = SRegOffset(rl_src.s_reg_low);
1109
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001110 LIR *lir = NewLIR3(x86op, rl_dest.reg.GetReg(), rBase, displacement + LOWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001111 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1112 true /* is_load */, true /* is64bit */);
1113 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001114 lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), rBase, displacement + HIWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001115 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1116 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001117}
1118
Mark Mendelle02d48f2014-01-15 11:19:23 -08001119void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1120 rl_dest = UpdateLocWide(rl_dest);
1121 if (rl_dest.location == kLocPhysReg) {
1122 // Ensure we are in a register pair
1123 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1124
1125 rl_src = UpdateLocWide(rl_src);
1126 GenLongRegOrMemOp(rl_result, rl_src, op);
1127 StoreFinalValueWide(rl_dest, rl_result);
1128 return;
1129 }
1130
1131 // It wasn't in registers, so it better be in memory.
1132 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1133 (rl_dest.location == kLocCompilerTemp));
1134 rl_src = LoadValueWide(rl_src, kCoreReg);
1135
1136 // Operate directly into memory.
1137 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1138 int rBase = TargetReg(kSp);
1139 int displacement = SRegOffset(rl_dest.s_reg_low);
1140
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001141 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001142 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1143 false /* is_load */, true /* is64bit */);
1144 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001145 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001146 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1147 false /* is_load */, true /* is64bit */);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001148 FreeTemp(rl_src.reg.GetReg());
1149 FreeTemp(rl_src.reg.GetHighReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001150}
1151
Mark Mendelle02d48f2014-01-15 11:19:23 -08001152void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1153 RegLocation rl_src2, Instruction::Code op,
1154 bool is_commutative) {
1155 // Is this really a 2 operand operation?
1156 switch (op) {
1157 case Instruction::ADD_LONG_2ADDR:
1158 case Instruction::SUB_LONG_2ADDR:
1159 case Instruction::AND_LONG_2ADDR:
1160 case Instruction::OR_LONG_2ADDR:
1161 case Instruction::XOR_LONG_2ADDR:
1162 GenLongArith(rl_dest, rl_src2, op);
1163 return;
1164 default:
1165 break;
1166 }
1167
1168 if (rl_dest.location == kLocPhysReg) {
1169 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1170
1171 // We are about to clobber the LHS, so it needs to be a temp.
1172 rl_result = ForceTempWide(rl_result);
1173
1174 // Perform the operation using the RHS.
1175 rl_src2 = UpdateLocWide(rl_src2);
1176 GenLongRegOrMemOp(rl_result, rl_src2, op);
1177
1178 // And now record that the result is in the temp.
1179 StoreFinalValueWide(rl_dest, rl_result);
1180 return;
1181 }
1182
1183 // It wasn't in registers, so it better be in memory.
1184 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1185 (rl_dest.location == kLocCompilerTemp));
1186 rl_src1 = UpdateLocWide(rl_src1);
1187 rl_src2 = UpdateLocWide(rl_src2);
1188
1189 // Get one of the source operands into temporary register.
1190 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001191 if (IsTemp(rl_src1.reg.GetReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001192 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1193 } else if (is_commutative) {
1194 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1195 // We need at least one of them to be a temporary.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001196 if (!(IsTemp(rl_src2.reg.GetReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001197 rl_src1 = ForceTempWide(rl_src1);
1198 }
1199 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1200 } else {
1201 // Need LHS to be the temp.
1202 rl_src1 = ForceTempWide(rl_src1);
1203 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1204 }
1205
1206 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001207}
1208
Mark Mendelle02d48f2014-01-15 11:19:23 -08001209void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001210 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001211 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1212}
1213
1214void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1215 RegLocation rl_src1, RegLocation rl_src2) {
1216 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1217}
1218
1219void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1220 RegLocation rl_src1, RegLocation rl_src2) {
1221 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1222}
1223
1224void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1225 RegLocation rl_src1, RegLocation rl_src2) {
1226 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1227}
1228
1229void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1230 RegLocation rl_src1, RegLocation rl_src2) {
1231 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001232}
1233
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001234void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001235 rl_src = LoadValueWide(rl_src, kCoreReg);
1236 RegLocation rl_result = ForceTempWide(rl_src);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001237 if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1238 ((rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001239 // The registers are the same, so we would clobber it before the use.
1240 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001241 OpRegCopy(temp_reg, rl_result.reg.GetReg());
1242 rl_result.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001243 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001244 OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_result.reg.GetReg()); // rLow = -rLow
1245 OpRegImm(kOpAdc, rl_result.reg.GetHighReg(), 0); // rHigh = rHigh + CF
1246 OpRegReg(kOpNeg, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg()); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001247 StoreValueWide(rl_dest, rl_result);
1248}
1249
Ian Rogers468532e2013-08-05 10:56:33 -07001250void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001251 X86OpCode opcode = kX86Bkpt;
1252 switch (op) {
1253 case kOpCmp: opcode = kX86Cmp32RT; break;
1254 case kOpMov: opcode = kX86Mov32RT; break;
1255 default:
1256 LOG(FATAL) << "Bad opcode: " << op;
1257 break;
1258 }
Ian Rogers468532e2013-08-05 10:56:33 -07001259 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001260}
1261
1262/*
1263 * Generate array load
1264 */
1265void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001266 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001267 RegisterClass reg_class = oat_reg_class_by_size(size);
1268 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001269 RegLocation rl_result;
1270 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001271
Mark Mendell343adb52013-12-18 06:02:17 -08001272 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001273 if (size == kLong || size == kDouble) {
1274 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1275 } else {
1276 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1277 }
1278
Mark Mendell343adb52013-12-18 06:02:17 -08001279 bool constant_index = rl_index.is_const;
1280 int32_t constant_index_value = 0;
1281 if (!constant_index) {
1282 rl_index = LoadValue(rl_index, kCoreReg);
1283 } else {
1284 constant_index_value = mir_graph_->ConstantValue(rl_index);
1285 // If index is constant, just fold it into the data offset
1286 data_offset += constant_index_value << scale;
1287 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001288 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001289 }
1290
Brian Carlstrom7940e442013-07-12 13:46:57 -07001291 /* null object? */
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001292 GenNullCheck(rl_array.s_reg_low, rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001293
1294 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001295 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001296 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001297 constant_index_value, kThrowConstantArrayBounds);
1298 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001299 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001300 len_offset, kThrowArrayBounds);
1301 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001302 }
Mark Mendell343adb52013-12-18 06:02:17 -08001303 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001304 if ((size == kLong) || (size == kDouble)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001305 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_result.reg.GetReg(),
1306 rl_result.reg.GetHighReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001307 StoreValueWide(rl_dest, rl_result);
1308 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001309 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale,
1310 data_offset, rl_result.reg.GetReg(), INVALID_REG, size,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001311 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001312 StoreValue(rl_dest, rl_result);
1313 }
1314}
1315
1316/*
1317 * Generate array store
1318 *
1319 */
1320void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001321 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001322 RegisterClass reg_class = oat_reg_class_by_size(size);
1323 int len_offset = mirror::Array::LengthOffset().Int32Value();
1324 int data_offset;
1325
1326 if (size == kLong || size == kDouble) {
1327 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1328 } else {
1329 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1330 }
1331
1332 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001333 bool constant_index = rl_index.is_const;
1334 int32_t constant_index_value = 0;
1335 if (!constant_index) {
1336 rl_index = LoadValue(rl_index, kCoreReg);
1337 } else {
1338 // If index is constant, just fold it into the data offset
1339 constant_index_value = mir_graph_->ConstantValue(rl_index);
1340 data_offset += constant_index_value << scale;
1341 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001342 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001343 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001344
1345 /* null object? */
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001346 GenNullCheck(rl_array.s_reg_low, rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001347
1348 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001349 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001350 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001351 constant_index_value, kThrowConstantArrayBounds);
1352 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001353 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001354 len_offset, kThrowArrayBounds);
1355 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001356 }
1357 if ((size == kLong) || (size == kDouble)) {
1358 rl_src = LoadValueWide(rl_src, reg_class);
1359 } else {
1360 rl_src = LoadValue(rl_src, reg_class);
1361 }
1362 // If the src reg can't be byte accessed, move it to a temp first.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001363 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001364 int temp = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001365 OpRegCopy(temp, rl_src.reg.GetReg());
1366 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, temp,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001367 INVALID_REG, size, INVALID_SREG);
1368 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001369 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_src.reg.GetReg(),
1370 rl_src.wide ? rl_src.reg.GetHighReg() : INVALID_REG, size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001371 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001372 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001373 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001374 if (!constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001375 FreeTemp(rl_index.reg.GetReg());
Mark Mendell343adb52013-12-18 06:02:17 -08001376 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001377 MarkGCCard(rl_src.reg.GetReg(), rl_array.reg.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001378 }
1379}
1380
Mark Mendell4708dcd2014-01-22 09:05:18 -08001381RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1382 RegLocation rl_src, int shift_amount) {
1383 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1384 switch (opcode) {
1385 case Instruction::SHL_LONG:
1386 case Instruction::SHL_LONG_2ADDR:
1387 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1388 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001389 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1390 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001391 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001392 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1393 FreeTemp(rl_src.reg.GetHighReg());
1394 NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1395 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001396 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001397 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1398 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1399 NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), shift_amount);
1400 NewLIR2(kX86Sal32RI, rl_result.reg.GetReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001401 }
1402 break;
1403 case Instruction::SHR_LONG:
1404 case Instruction::SHR_LONG_2ADDR:
1405 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001406 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1407 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1408 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001409 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001410 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1411 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1412 NewLIR2(kX86Sar32RI, rl_result.reg.GetReg(), shift_amount - 32);
1413 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001414 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001415 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1416 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1417 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1418 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001419 }
1420 break;
1421 case Instruction::USHR_LONG:
1422 case Instruction::USHR_LONG_2ADDR:
1423 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001424 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1425 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001426 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001427 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1428 NewLIR2(kX86Shr32RI, rl_result.reg.GetReg(), shift_amount - 32);
1429 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001430 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001431 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1432 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1433 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1434 NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001435 }
1436 break;
1437 default:
1438 LOG(FATAL) << "Unexpected case";
1439 }
1440 return rl_result;
1441}
1442
Brian Carlstrom7940e442013-07-12 13:46:57 -07001443void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001444 RegLocation rl_src, RegLocation rl_shift) {
1445 // Per spec, we only care about low 6 bits of shift amount.
1446 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1447 if (shift_amount == 0) {
1448 rl_src = LoadValueWide(rl_src, kCoreReg);
1449 StoreValueWide(rl_dest, rl_src);
1450 return;
1451 } else if (shift_amount == 1 &&
1452 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1453 // Need to handle this here to avoid calling StoreValueWide twice.
1454 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1455 return;
1456 }
1457 if (BadOverlap(rl_src, rl_dest)) {
1458 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1459 return;
1460 }
1461 rl_src = LoadValueWide(rl_src, kCoreReg);
1462 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1463 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001464}
1465
1466void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001467 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001468 switch (opcode) {
1469 case Instruction::ADD_LONG:
1470 case Instruction::AND_LONG:
1471 case Instruction::OR_LONG:
1472 case Instruction::XOR_LONG:
1473 if (rl_src2.is_const) {
1474 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1475 } else {
1476 DCHECK(rl_src1.is_const);
1477 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1478 }
1479 break;
1480 case Instruction::SUB_LONG:
1481 case Instruction::SUB_LONG_2ADDR:
1482 if (rl_src2.is_const) {
1483 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1484 } else {
1485 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1486 }
1487 break;
1488 case Instruction::ADD_LONG_2ADDR:
1489 case Instruction::OR_LONG_2ADDR:
1490 case Instruction::XOR_LONG_2ADDR:
1491 case Instruction::AND_LONG_2ADDR:
1492 if (rl_src2.is_const) {
1493 GenLongImm(rl_dest, rl_src2, opcode);
1494 } else {
1495 DCHECK(rl_src1.is_const);
1496 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1497 }
1498 break;
1499 default:
1500 // Default - bail to non-const handler.
1501 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1502 break;
1503 }
1504}
1505
1506bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1507 switch (op) {
1508 case Instruction::AND_LONG_2ADDR:
1509 case Instruction::AND_LONG:
1510 return value == -1;
1511 case Instruction::OR_LONG:
1512 case Instruction::OR_LONG_2ADDR:
1513 case Instruction::XOR_LONG:
1514 case Instruction::XOR_LONG_2ADDR:
1515 return value == 0;
1516 default:
1517 return false;
1518 }
1519}
1520
1521X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1522 bool is_high_op) {
1523 bool rhs_in_mem = rhs.location != kLocPhysReg;
1524 bool dest_in_mem = dest.location != kLocPhysReg;
1525 DCHECK(!rhs_in_mem || !dest_in_mem);
1526 switch (op) {
1527 case Instruction::ADD_LONG:
1528 case Instruction::ADD_LONG_2ADDR:
1529 if (dest_in_mem) {
1530 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1531 } else if (rhs_in_mem) {
1532 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1533 }
1534 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1535 case Instruction::SUB_LONG:
1536 case Instruction::SUB_LONG_2ADDR:
1537 if (dest_in_mem) {
1538 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1539 } else if (rhs_in_mem) {
1540 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1541 }
1542 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1543 case Instruction::AND_LONG_2ADDR:
1544 case Instruction::AND_LONG:
1545 if (dest_in_mem) {
1546 return kX86And32MR;
1547 }
1548 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1549 case Instruction::OR_LONG:
1550 case Instruction::OR_LONG_2ADDR:
1551 if (dest_in_mem) {
1552 return kX86Or32MR;
1553 }
1554 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1555 case Instruction::XOR_LONG:
1556 case Instruction::XOR_LONG_2ADDR:
1557 if (dest_in_mem) {
1558 return kX86Xor32MR;
1559 }
1560 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1561 default:
1562 LOG(FATAL) << "Unexpected opcode: " << op;
1563 return kX86Add32RR;
1564 }
1565}
1566
1567X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1568 int32_t value) {
1569 bool in_mem = loc.location != kLocPhysReg;
1570 bool byte_imm = IS_SIMM8(value);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001571 DCHECK(in_mem || !IsFpReg(loc.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001572 switch (op) {
1573 case Instruction::ADD_LONG:
1574 case Instruction::ADD_LONG_2ADDR:
1575 if (byte_imm) {
1576 if (in_mem) {
1577 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1578 }
1579 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1580 }
1581 if (in_mem) {
1582 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1583 }
1584 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1585 case Instruction::SUB_LONG:
1586 case Instruction::SUB_LONG_2ADDR:
1587 if (byte_imm) {
1588 if (in_mem) {
1589 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1590 }
1591 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1592 }
1593 if (in_mem) {
1594 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1595 }
1596 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1597 case Instruction::AND_LONG_2ADDR:
1598 case Instruction::AND_LONG:
1599 if (byte_imm) {
1600 return in_mem ? kX86And32MI8 : kX86And32RI8;
1601 }
1602 return in_mem ? kX86And32MI : kX86And32RI;
1603 case Instruction::OR_LONG:
1604 case Instruction::OR_LONG_2ADDR:
1605 if (byte_imm) {
1606 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1607 }
1608 return in_mem ? kX86Or32MI : kX86Or32RI;
1609 case Instruction::XOR_LONG:
1610 case Instruction::XOR_LONG_2ADDR:
1611 if (byte_imm) {
1612 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1613 }
1614 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1615 default:
1616 LOG(FATAL) << "Unexpected opcode: " << op;
1617 return kX86Add32MI;
1618 }
1619}
1620
1621void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1622 DCHECK(rl_src.is_const);
1623 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1624 int32_t val_lo = Low32Bits(val);
1625 int32_t val_hi = High32Bits(val);
1626 rl_dest = UpdateLocWide(rl_dest);
1627
1628 // Can we just do this into memory?
1629 if ((rl_dest.location == kLocDalvikFrame) ||
1630 (rl_dest.location == kLocCompilerTemp)) {
1631 int rBase = TargetReg(kSp);
1632 int displacement = SRegOffset(rl_dest.s_reg_low);
1633
1634 if (!IsNoOp(op, val_lo)) {
1635 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1636 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1637 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1638 false /* is_load */, true /* is64bit */);
1639 }
1640 if (!IsNoOp(op, val_hi)) {
1641 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1642 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1643 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1644 false /* is_load */, true /* is64bit */);
1645 }
1646 return;
1647 }
1648
1649 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1650 DCHECK_EQ(rl_result.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001651 DCHECK(!IsFpReg(rl_result.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001652
1653 if (!IsNoOp(op, val_lo)) {
1654 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001655 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001656 }
1657 if (!IsNoOp(op, val_hi)) {
1658 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001659 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001660 }
1661 StoreValueWide(rl_dest, rl_result);
1662}
1663
1664void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1665 RegLocation rl_src2, Instruction::Code op) {
1666 DCHECK(rl_src2.is_const);
1667 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1668 int32_t val_lo = Low32Bits(val);
1669 int32_t val_hi = High32Bits(val);
1670 rl_dest = UpdateLocWide(rl_dest);
1671 rl_src1 = UpdateLocWide(rl_src1);
1672
1673 // Can we do this directly into the destination registers?
1674 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001675 rl_dest.reg.GetReg() == rl_src1.reg.GetReg() && rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1676 !IsFpReg(rl_dest.reg.GetReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001677 if (!IsNoOp(op, val_lo)) {
1678 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001679 NewLIR2(x86op, rl_dest.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001680 }
1681 if (!IsNoOp(op, val_hi)) {
1682 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001683 NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001684 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001685
1686 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001687 return;
1688 }
1689
1690 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1691 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1692
1693 // We need the values to be in a temporary
1694 RegLocation rl_result = ForceTempWide(rl_src1);
1695 if (!IsNoOp(op, val_lo)) {
1696 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001697 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001698 }
1699 if (!IsNoOp(op, val_hi)) {
1700 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001701 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001702 }
1703
1704 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001705}
1706
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001707// For final classes there are no sub-classes to check and so we can answer the instance-of
1708// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1709void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1710 RegLocation rl_dest, RegLocation rl_src) {
1711 RegLocation object = LoadValue(rl_src, kCoreReg);
1712 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001713 int result_reg = rl_result.reg.GetReg();
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001714
1715 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001716 if (result_reg == object.reg.GetReg() || result_reg >= 4) {
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001717 result_reg = AllocTypedTemp(false, kCoreReg);
1718 DCHECK_LT(result_reg, 4);
1719 }
1720
1721 // Assume that there is no match.
1722 LoadConstant(result_reg, 0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001723 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001724
1725 int check_class = AllocTypedTemp(false, kCoreReg);
1726
1727 // If Method* is already in a register, we can save a copy.
1728 RegLocation rl_method = mir_graph_->GetMethodLoc();
1729 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1730 (sizeof(mirror::Class*) * type_idx);
1731
1732 if (rl_method.location == kLocPhysReg) {
1733 if (use_declaring_class) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001734 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001735 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1736 check_class);
1737 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001738 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001739 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1740 check_class);
1741 LoadWordDisp(check_class, offset_of_type, check_class);
1742 }
1743 } else {
1744 LoadCurrMethodDirect(check_class);
1745 if (use_declaring_class) {
1746 LoadWordDisp(check_class,
1747 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1748 check_class);
1749 } else {
1750 LoadWordDisp(check_class,
1751 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1752 check_class);
1753 LoadWordDisp(check_class, offset_of_type, check_class);
1754 }
1755 }
1756
1757 // Compare the computed class to the class in the object.
1758 DCHECK_EQ(object.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001759 OpRegMem(kOpCmp, check_class, object.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001760 mirror::Object::ClassOffset().Int32Value());
1761
1762 // Set the low byte of the result to 0 or 1 from the compare condition code.
1763 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1764
1765 LIR* target = NewLIR0(kPseudoTargetLabel);
1766 null_branchover->target = target;
1767 FreeTemp(check_class);
1768 if (IsTemp(result_reg)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001769 OpRegCopy(rl_result.reg.GetReg(), result_reg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001770 FreeTemp(result_reg);
1771 }
1772 StoreValue(rl_dest, rl_result);
1773}
1774
Mark Mendell6607d972014-02-10 06:54:18 -08001775void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1776 bool type_known_abstract, bool use_declaring_class,
1777 bool can_assume_type_is_in_dex_cache,
1778 uint32_t type_idx, RegLocation rl_dest,
1779 RegLocation rl_src) {
1780 FlushAllRegs();
1781 // May generate a call - use explicit registers.
1782 LockCallTemps();
1783 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1784 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1785 // Reference must end up in kArg0.
1786 if (needs_access_check) {
1787 // Check we have access to type_idx and if not throw IllegalAccessError,
1788 // Caller function returns Class* in kArg0.
1789 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1790 type_idx, true);
1791 OpRegCopy(class_reg, TargetReg(kRet0));
1792 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1793 } else if (use_declaring_class) {
1794 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1795 LoadWordDisp(TargetReg(kArg1),
1796 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1797 } else {
1798 // Load dex cache entry into class_reg (kArg2).
1799 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1800 LoadWordDisp(TargetReg(kArg1),
1801 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1802 int32_t offset_of_type =
1803 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1804 * type_idx);
1805 LoadWordDisp(class_reg, offset_of_type, class_reg);
1806 if (!can_assume_type_is_in_dex_cache) {
1807 // Need to test presence of type in dex cache at runtime.
1808 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1809 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1810 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1811 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1812 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1813 // Rejoin code paths
1814 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1815 hop_branch->target = hop_target;
1816 }
1817 }
1818 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1819 RegLocation rl_result = GetReturn(false);
1820
1821 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001822 DCHECK_LT(rl_result.reg.GetReg(), 4);
Mark Mendell6607d972014-02-10 06:54:18 -08001823
1824 // Is the class NULL?
1825 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1826
1827 /* Load object->klass_. */
1828 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1829 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1830 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1831 LIR* branchover = nullptr;
1832 if (type_known_final) {
1833 // Ensure top 3 bytes of result are 0.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001834 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell6607d972014-02-10 06:54:18 -08001835 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1836 // Set the low byte of the result to 0 or 1 from the compare condition code.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001837 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
Mark Mendell6607d972014-02-10 06:54:18 -08001838 } else {
1839 if (!type_known_abstract) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001840 LoadConstant(rl_result.reg.GetReg(), 1); // Assume result succeeds.
Mark Mendell6607d972014-02-10 06:54:18 -08001841 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1842 }
1843 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1844 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1845 }
1846 // TODO: only clobber when type isn't final?
1847 ClobberCallerSave();
1848 /* Branch targets here. */
1849 LIR* target = NewLIR0(kPseudoTargetLabel);
1850 StoreValue(rl_dest, rl_result);
1851 branch1->target = target;
1852 if (branchover != nullptr) {
1853 branchover->target = target;
1854 }
1855}
1856
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001857void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1858 RegLocation rl_lhs, RegLocation rl_rhs) {
1859 OpKind op = kOpBkpt;
1860 bool is_div_rem = false;
1861 bool unary = false;
1862 bool shift_op = false;
1863 bool is_two_addr = false;
1864 RegLocation rl_result;
1865 switch (opcode) {
1866 case Instruction::NEG_INT:
1867 op = kOpNeg;
1868 unary = true;
1869 break;
1870 case Instruction::NOT_INT:
1871 op = kOpMvn;
1872 unary = true;
1873 break;
1874 case Instruction::ADD_INT_2ADDR:
1875 is_two_addr = true;
1876 // Fallthrough
1877 case Instruction::ADD_INT:
1878 op = kOpAdd;
1879 break;
1880 case Instruction::SUB_INT_2ADDR:
1881 is_two_addr = true;
1882 // Fallthrough
1883 case Instruction::SUB_INT:
1884 op = kOpSub;
1885 break;
1886 case Instruction::MUL_INT_2ADDR:
1887 is_two_addr = true;
1888 // Fallthrough
1889 case Instruction::MUL_INT:
1890 op = kOpMul;
1891 break;
1892 case Instruction::DIV_INT_2ADDR:
1893 is_two_addr = true;
1894 // Fallthrough
1895 case Instruction::DIV_INT:
1896 op = kOpDiv;
1897 is_div_rem = true;
1898 break;
1899 /* NOTE: returns in kArg1 */
1900 case Instruction::REM_INT_2ADDR:
1901 is_two_addr = true;
1902 // Fallthrough
1903 case Instruction::REM_INT:
1904 op = kOpRem;
1905 is_div_rem = true;
1906 break;
1907 case Instruction::AND_INT_2ADDR:
1908 is_two_addr = true;
1909 // Fallthrough
1910 case Instruction::AND_INT:
1911 op = kOpAnd;
1912 break;
1913 case Instruction::OR_INT_2ADDR:
1914 is_two_addr = true;
1915 // Fallthrough
1916 case Instruction::OR_INT:
1917 op = kOpOr;
1918 break;
1919 case Instruction::XOR_INT_2ADDR:
1920 is_two_addr = true;
1921 // Fallthrough
1922 case Instruction::XOR_INT:
1923 op = kOpXor;
1924 break;
1925 case Instruction::SHL_INT_2ADDR:
1926 is_two_addr = true;
1927 // Fallthrough
1928 case Instruction::SHL_INT:
1929 shift_op = true;
1930 op = kOpLsl;
1931 break;
1932 case Instruction::SHR_INT_2ADDR:
1933 is_two_addr = true;
1934 // Fallthrough
1935 case Instruction::SHR_INT:
1936 shift_op = true;
1937 op = kOpAsr;
1938 break;
1939 case Instruction::USHR_INT_2ADDR:
1940 is_two_addr = true;
1941 // Fallthrough
1942 case Instruction::USHR_INT:
1943 shift_op = true;
1944 op = kOpLsr;
1945 break;
1946 default:
1947 LOG(FATAL) << "Invalid word arith op: " << opcode;
1948 }
1949
1950 // Can we convert to a two address instruction?
1951 if (!is_two_addr &&
1952 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1953 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1954 is_two_addr = true;
1955 }
1956
1957 // Get the div/rem stuff out of the way.
1958 if (is_div_rem) {
1959 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1960 StoreValue(rl_dest, rl_result);
1961 return;
1962 }
1963
1964 if (unary) {
1965 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1966 rl_result = UpdateLoc(rl_dest);
1967 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001968 OpRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001969 } else {
1970 if (shift_op) {
1971 // X86 doesn't require masking and must use ECX.
1972 int t_reg = TargetReg(kCount); // rCX
1973 LoadValueDirectFixed(rl_rhs, t_reg);
1974 if (is_two_addr) {
1975 // Can we do this directly into memory?
1976 rl_result = UpdateLoc(rl_dest);
1977 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1978 if (rl_result.location != kLocPhysReg) {
1979 // Okay, we can do this into memory
1980 OpMemReg(op, rl_result, t_reg);
1981 FreeTemp(t_reg);
1982 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001983 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001984 // Can do this directly into the result register
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001985 OpRegReg(op, rl_result.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001986 FreeTemp(t_reg);
1987 StoreFinalValue(rl_dest, rl_result);
1988 return;
1989 }
1990 }
1991 // Three address form, or we can't do directly.
1992 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1993 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001994 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001995 FreeTemp(t_reg);
1996 } else {
1997 // Multiply is 3 operand only (sort of).
1998 if (is_two_addr && op != kOpMul) {
1999 // Can we do this directly into memory?
2000 rl_result = UpdateLoc(rl_dest);
2001 if (rl_result.location == kLocPhysReg) {
2002 // Can we do this from memory directly?
2003 rl_rhs = UpdateLoc(rl_rhs);
2004 if (rl_rhs.location != kLocPhysReg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002005 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002006 StoreFinalValue(rl_dest, rl_result);
2007 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002008 } else if (!IsFpReg(rl_rhs.reg.GetReg())) {
2009 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002010 StoreFinalValue(rl_dest, rl_result);
2011 return;
2012 }
2013 }
2014 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2015 if (rl_result.location != kLocPhysReg) {
2016 // Okay, we can do this into memory.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002017 OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002018 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002019 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002020 // Can do this directly into the result register.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002021 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002022 StoreFinalValue(rl_dest, rl_result);
2023 return;
2024 } else {
2025 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2026 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002027 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002028 }
2029 } else {
2030 // Try to use reg/memory instructions.
2031 rl_lhs = UpdateLoc(rl_lhs);
2032 rl_rhs = UpdateLoc(rl_rhs);
2033 // We can't optimize with FP registers.
2034 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2035 // Something is difficult, so fall back to the standard case.
2036 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2037 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2038 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002039 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002040 } else {
2041 // We can optimize by moving to result and using memory operands.
2042 if (rl_rhs.location != kLocPhysReg) {
2043 // Force LHS into result.
2044 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002045 LoadValueDirect(rl_lhs, rl_result.reg.GetReg());
2046 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002047 } else if (rl_lhs.location != kLocPhysReg) {
2048 // RHS is in a register; LHS is in memory.
2049 if (op != kOpSub) {
2050 // Force RHS into result and operate on memory.
2051 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002052 OpRegCopy(rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2053 OpRegMem(op, rl_result.reg.GetReg(), rl_lhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002054 } else {
2055 // Subtraction isn't commutative.
2056 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2057 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2058 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002059 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002060 }
2061 } else {
2062 // Both are in registers.
2063 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2064 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2065 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002066 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002067 }
2068 }
2069 }
2070 }
2071 }
2072 StoreValue(rl_dest, rl_result);
2073}
2074
2075bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2076 // If we have non-core registers, then we can't do good things.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002077 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002078 return false;
2079 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002080 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002081 return false;
2082 }
2083
2084 // Everything will be fine :-).
2085 return true;
2086}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002087} // namespace art