blob: 0ecc0915facc079019b5a631fb9bbba39bd60e37 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187 \
188{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194 \
195{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202 SHIFT_ENCODING_MAP(Rol, 0x0),
203 SHIFT_ENCODING_MAP(Ror, 0x1),
204 SHIFT_ENCODING_MAP(Rcl, 0x2),
205 SHIFT_ENCODING_MAP(Rcr, 0x3),
206 SHIFT_ENCODING_MAP(Sal, 0x4),
207 SHIFT_ENCODING_MAP(Shr, 0x5),
208 SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225 reg, reg_kind, reg_flags, \
226 mem, mem_kind, mem_flags, \
227 arr, arr_kind, arr_flags, imm, \
228 b_flags, hw_flags, w_flags, \
229 b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
Vladimir Marko70b797d2013-12-03 15:25:24 +0000249 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
250 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
251 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100252
Brian Carlstrom7940e442013-07-12 13:46:57 -0700253#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
254{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
255{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
256{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
257
258 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
259 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
260 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
261
262 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
263 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
264 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
265
266 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
267 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
268 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
269 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
270 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
271 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
273 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
274 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
275 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
276 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
278 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
279 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
288
289 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
290 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800291 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000292 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700293
294 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
295 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
296 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
297 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
298
299 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
300 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
301 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
302
303 // TODO: load/store?
304 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
305 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
306
307 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
308 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
309
310 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
311 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
312 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700313 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
314 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000315 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
316 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700317
318 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
319 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
320 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
321 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
322#undef EXT_0F_ENCODING_MAP
323
324 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
325 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
326 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
327 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
328 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
329 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
330 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
331 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
332 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700333 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700334
335 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
336 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
337 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
338};
339
340static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
341 size_t size = 0;
342 if (entry->skeleton.prefix1 > 0) {
343 ++size;
344 if (entry->skeleton.prefix2 > 0) {
345 ++size;
346 }
347 }
348 ++size; // opcode
349 if (entry->skeleton.opcode == 0x0F) {
350 ++size;
351 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
352 ++size;
353 }
354 }
355 ++size; // modrm
356 if (has_sib || base == rX86_SP) {
357 // SP requires a SIB byte.
358 ++size;
359 }
360 if (displacement != 0 || base == rBP) {
361 // BP requires an explicit displacement, even when it's 0.
362 if (entry->opcode != kX86Lea32RA) {
363 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
364 }
365 size += IS_SIMM8(displacement) ? 1 : 4;
366 }
367 size += entry->skeleton.immediate_bytes;
368 return size;
369}
370
371int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700372 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700373 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
374 switch (entry->kind) {
375 case kData:
376 return 4; // 4 bytes of data
377 case kNop:
378 return lir->operands[0]; // length of nop is sole operand
379 case kNullary:
380 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100381 case kRegOpcode: // lir operands - 0: reg
382 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700383 case kReg: // lir operands - 0: reg
384 return ComputeSize(entry, 0, 0, false);
385 case kMem: // lir operands - 0: base, 1: disp
386 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
387 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
388 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
389 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
390 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
391 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
392 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
393 case kThreadReg: // lir operands - 0: disp, 1: reg
394 return ComputeSize(entry, 0, lir->operands[0], false);
395 case kRegReg:
396 return ComputeSize(entry, 0, 0, false);
397 case kRegRegStore:
398 return ComputeSize(entry, 0, 0, false);
399 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
400 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
401 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
402 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
403 case kRegThread: // lir operands - 0: reg, 1: disp
404 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
405 case kRegImm: { // lir operands - 0: reg, 1: immediate
406 size_t size = ComputeSize(entry, 0, 0, false);
407 if (entry->skeleton.ax_opcode == 0) {
408 return size;
409 } else {
410 // AX opcodes don't require the modrm byte.
411 int reg = lir->operands[0];
412 return size - (reg == rAX ? 1 : 0);
413 }
414 }
415 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
416 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
417 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
418 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
419 case kThreadImm: // lir operands - 0: disp, 1: imm
420 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
421 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
422 return ComputeSize(entry, 0, 0, false);
423 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
424 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
425 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
426 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
427 case kMovRegImm: // lir operands - 0: reg, 1: immediate
428 return 1 + entry->skeleton.immediate_bytes;
429 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
430 // Shift by immediate one has a shorter opcode.
431 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
432 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
433 // Shift by immediate one has a shorter opcode.
434 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
435 (lir->operands[2] == 1 ? 1 : 0);
436 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
437 // Shift by immediate one has a shorter opcode.
438 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
439 (lir->operands[4] == 1 ? 1 : 0);
440 case kShiftRegCl:
441 return ComputeSize(entry, 0, 0, false);
442 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
443 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
444 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
445 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
446 case kRegCond: // lir operands - 0: reg, 1: cond
447 return ComputeSize(entry, 0, 0, false);
448 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
449 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
450 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
451 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
452 case kJcc:
453 if (lir->opcode == kX86Jcc8) {
454 return 2; // opcode + rel8
455 } else {
456 DCHECK(lir->opcode == kX86Jcc32);
457 return 6; // 2 byte opcode + rel32
458 }
459 case kJmp:
460 if (lir->opcode == kX86Jmp8) {
461 return 2; // opcode + rel8
462 } else if (lir->opcode == kX86Jmp32) {
463 return 5; // opcode + rel32
464 } else {
465 DCHECK(lir->opcode == kX86JmpR);
466 return 2; // opcode + modrm
467 }
468 case kCall:
469 switch (lir->opcode) {
470 case kX86CallR: return 2; // opcode modrm
471 case kX86CallM: // lir operands - 0: base, 1: disp
472 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
473 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
474 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
475 case kX86CallT: // lir operands - 0: disp
476 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
477 default:
478 break;
479 }
480 break;
481 case kPcRel:
482 if (entry->opcode == kX86PcRelLoadRA) {
483 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
484 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
485 } else {
486 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700487 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700488 }
489 case kMacro:
490 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
491 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
492 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
493 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
494 default:
495 break;
496 }
497 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
498 return 0;
499}
500
Vladimir Marko057c74a2013-12-03 15:20:45 +0000501void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
502 if (entry->skeleton.prefix1 != 0) {
503 code_buffer_.push_back(entry->skeleton.prefix1);
504 if (entry->skeleton.prefix2 != 0) {
505 code_buffer_.push_back(entry->skeleton.prefix2);
506 }
507 } else {
508 DCHECK_EQ(0, entry->skeleton.prefix2);
509 }
510}
511
512void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
513 code_buffer_.push_back(entry->skeleton.opcode);
514 if (entry->skeleton.opcode == 0x0F) {
515 code_buffer_.push_back(entry->skeleton.extra_opcode1);
516 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
517 code_buffer_.push_back(entry->skeleton.extra_opcode2);
518 } else {
519 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
520 }
521 } else {
522 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
523 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
524 }
525}
526
527void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
528 EmitPrefix(entry);
529 EmitOpcode(entry);
530}
531
Brian Carlstrom7940e442013-07-12 13:46:57 -0700532static uint8_t ModrmForDisp(int base, int disp) {
533 // BP requires an explicit disp, so do not omit it in the 0 case
534 if (disp == 0 && base != rBP) {
535 return 0;
536 } else if (IS_SIMM8(disp)) {
537 return 1;
538 } else {
539 return 2;
540 }
541}
542
Vladimir Marko057c74a2013-12-03 15:20:45 +0000543void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700544 // BP requires an explicit disp, so do not omit it in the 0 case
545 if (disp == 0 && base != rBP) {
546 return;
547 } else if (IS_SIMM8(disp)) {
548 code_buffer_.push_back(disp & 0xFF);
549 } else {
550 code_buffer_.push_back(disp & 0xFF);
551 code_buffer_.push_back((disp >> 8) & 0xFF);
552 code_buffer_.push_back((disp >> 16) & 0xFF);
553 code_buffer_.push_back((disp >> 24) & 0xFF);
554 }
555}
556
Vladimir Marko057c74a2013-12-03 15:20:45 +0000557void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
558 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700559 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000560 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700561 code_buffer_.push_back(modrm);
562 if (base == rX86_SP) {
563 // Special SIB for SP base
564 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
565 }
566 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700567}
568
Vladimir Marko057c74a2013-12-03 15:20:45 +0000569void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
570 int scale, int disp) {
571 DCHECK_LT(reg_or_opcode, 8);
572 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700573 code_buffer_.push_back(modrm);
574 DCHECK_LT(scale, 4);
575 DCHECK_LT(index, 8);
576 DCHECK_LT(base, 8);
577 uint8_t sib = (scale << 6) | (index << 3) | base;
578 code_buffer_.push_back(sib);
579 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700580}
581
Vladimir Marko057c74a2013-12-03 15:20:45 +0000582void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700583 switch (entry->skeleton.immediate_bytes) {
584 case 1:
585 DCHECK(IS_SIMM8(imm));
586 code_buffer_.push_back(imm & 0xFF);
587 break;
588 case 2:
589 DCHECK(IS_SIMM16(imm));
590 code_buffer_.push_back(imm & 0xFF);
591 code_buffer_.push_back((imm >> 8) & 0xFF);
592 break;
593 case 4:
594 code_buffer_.push_back(imm & 0xFF);
595 code_buffer_.push_back((imm >> 8) & 0xFF);
596 code_buffer_.push_back((imm >> 16) & 0xFF);
597 code_buffer_.push_back((imm >> 24) & 0xFF);
598 break;
599 default:
600 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
601 << ") for instruction: " << entry->name;
602 break;
603 }
604}
605
Vladimir Marko057c74a2013-12-03 15:20:45 +0000606void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
607 EmitPrefixAndOpcode(entry);
608 // There's no 3-byte instruction with +rd
609 DCHECK(entry->skeleton.opcode != 0x0F ||
610 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
611 DCHECK(!X86_FPREG(reg));
612 DCHECK_LT(reg, 8);
613 code_buffer_.back() += reg;
614 DCHECK_EQ(0, entry->skeleton.ax_opcode);
615 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
616}
617
618void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
619 EmitPrefixAndOpcode(entry);
620 if (X86_FPREG(reg)) {
621 reg = reg & X86_FP_REG_MASK;
622 }
623 if (reg >= 4) {
624 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
625 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
626 }
627 DCHECK_LT(reg, 8);
628 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
629 code_buffer_.push_back(modrm);
630 DCHECK_EQ(0, entry->skeleton.ax_opcode);
631 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
632}
633
634void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
635 EmitPrefix(entry);
636 code_buffer_.push_back(entry->skeleton.opcode);
637 DCHECK_NE(0x0F, entry->skeleton.opcode);
638 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
639 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
640 DCHECK_NE(rX86_SP, base);
641 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
642 DCHECK_EQ(0, entry->skeleton.ax_opcode);
643 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
644}
645
646void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
647 int scale, int disp) {
648 EmitPrefixAndOpcode(entry);
649 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
650 DCHECK_EQ(0, entry->skeleton.ax_opcode);
651 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
652}
653
654void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
655 uint8_t base, int disp, uint8_t reg) {
656 EmitPrefixAndOpcode(entry);
657 if (X86_FPREG(reg)) {
658 reg = reg & X86_FP_REG_MASK;
659 }
660 if (reg >= 4) {
661 DCHECK(strchr(entry->name, '8') == NULL ||
662 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
663 << entry->name << " " << static_cast<int>(reg)
664 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
665 }
666 EmitModrmDisp(reg, base, disp);
667 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
668 DCHECK_EQ(0, entry->skeleton.ax_opcode);
669 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
670}
671
672void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
673 uint8_t reg, uint8_t base, int disp) {
674 // Opcode will flip operands.
675 EmitMemReg(entry, base, disp, reg);
676}
677
678void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
679 int scale, int disp) {
680 EmitPrefixAndOpcode(entry);
681 if (X86_FPREG(reg)) {
682 reg = reg & X86_FP_REG_MASK;
683 }
684 EmitModrmSibDisp(reg, base, index, scale, disp);
685 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
686 DCHECK_EQ(0, entry->skeleton.ax_opcode);
687 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
688}
689
690void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
691 uint8_t reg) {
692 // Opcode will flip operands.
693 EmitRegArray(entry, reg, base, index, scale, disp);
694}
695
696void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
697 DCHECK_NE(entry->skeleton.prefix1, 0);
698 EmitPrefixAndOpcode(entry);
699 if (X86_FPREG(reg)) {
700 reg = reg & X86_FP_REG_MASK;
701 }
702 if (reg >= 4) {
703 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
704 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
705 }
706 DCHECK_LT(reg, 8);
707 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
708 code_buffer_.push_back(modrm);
709 code_buffer_.push_back(disp & 0xFF);
710 code_buffer_.push_back((disp >> 8) & 0xFF);
711 code_buffer_.push_back((disp >> 16) & 0xFF);
712 code_buffer_.push_back((disp >> 24) & 0xFF);
713 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
714 DCHECK_EQ(0, entry->skeleton.ax_opcode);
715 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
716}
717
718void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
719 EmitPrefixAndOpcode(entry);
720 if (X86_FPREG(reg1)) {
721 reg1 = reg1 & X86_FP_REG_MASK;
722 }
723 if (X86_FPREG(reg2)) {
724 reg2 = reg2 & X86_FP_REG_MASK;
725 }
726 DCHECK_LT(reg1, 8);
727 DCHECK_LT(reg2, 8);
728 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
729 code_buffer_.push_back(modrm);
730 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
731 DCHECK_EQ(0, entry->skeleton.ax_opcode);
732 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
733}
734
735void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
736 uint8_t reg1, uint8_t reg2, int32_t imm) {
737 EmitPrefixAndOpcode(entry);
738 if (X86_FPREG(reg1)) {
739 reg1 = reg1 & X86_FP_REG_MASK;
740 }
741 if (X86_FPREG(reg2)) {
742 reg2 = reg2 & X86_FP_REG_MASK;
743 }
744 DCHECK_LT(reg1, 8);
745 DCHECK_LT(reg2, 8);
746 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
747 code_buffer_.push_back(modrm);
748 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
749 DCHECK_EQ(0, entry->skeleton.ax_opcode);
750 EmitImm(entry, imm);
751}
752
Brian Carlstrom7940e442013-07-12 13:46:57 -0700753void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
754 if (entry->skeleton.prefix1 != 0) {
755 code_buffer_.push_back(entry->skeleton.prefix1);
756 if (entry->skeleton.prefix2 != 0) {
757 code_buffer_.push_back(entry->skeleton.prefix2);
758 }
759 } else {
760 DCHECK_EQ(0, entry->skeleton.prefix2);
761 }
762 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
763 code_buffer_.push_back(entry->skeleton.ax_opcode);
764 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000765 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700766 if (X86_FPREG(reg)) {
767 reg = reg & X86_FP_REG_MASK;
768 }
769 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
770 code_buffer_.push_back(modrm);
771 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000772 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700773}
774
775void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000776 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700777 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
778 code_buffer_.push_back(modrm);
779 code_buffer_.push_back(disp & 0xFF);
780 code_buffer_.push_back((disp >> 8) & 0xFF);
781 code_buffer_.push_back((disp >> 16) & 0xFF);
782 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000783 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700784 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
785}
786
787void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
788 DCHECK_LT(reg, 8);
789 code_buffer_.push_back(0xB8 + reg);
790 code_buffer_.push_back(imm & 0xFF);
791 code_buffer_.push_back((imm >> 8) & 0xFF);
792 code_buffer_.push_back((imm >> 16) & 0xFF);
793 code_buffer_.push_back((imm >> 24) & 0xFF);
794}
795
796void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000797 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700798 if (imm != 1) {
799 code_buffer_.push_back(entry->skeleton.opcode);
800 } else {
801 // Shorter encoding for 1 bit shift
802 code_buffer_.push_back(entry->skeleton.ax_opcode);
803 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000804 DCHECK_NE(0x0F, entry->skeleton.opcode);
805 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
806 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700807 if (reg >= 4) {
808 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
809 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
810 }
811 DCHECK_LT(reg, 8);
812 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
813 code_buffer_.push_back(modrm);
814 if (imm != 1) {
815 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
816 DCHECK(IS_SIMM8(imm));
817 code_buffer_.push_back(imm & 0xFF);
818 }
819}
820
821void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
822 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000823 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700824 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000825 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700826 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
827 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
828 DCHECK_LT(reg, 8);
829 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
830 code_buffer_.push_back(modrm);
831 DCHECK_EQ(0, entry->skeleton.ax_opcode);
832 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
833}
834
835void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
836 if (entry->skeleton.prefix1 != 0) {
837 code_buffer_.push_back(entry->skeleton.prefix1);
838 if (entry->skeleton.prefix2 != 0) {
839 code_buffer_.push_back(entry->skeleton.prefix2);
840 }
841 } else {
842 DCHECK_EQ(0, entry->skeleton.prefix2);
843 }
844 DCHECK_EQ(0, entry->skeleton.ax_opcode);
845 DCHECK_EQ(0x0F, entry->skeleton.opcode);
846 code_buffer_.push_back(0x0F);
847 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
848 code_buffer_.push_back(0x90 | condition);
849 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
850 DCHECK_LT(reg, 8);
851 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
852 code_buffer_.push_back(modrm);
853 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
854}
855
856void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
857 if (entry->opcode == kX86Jmp8) {
858 DCHECK(IS_SIMM8(rel));
859 code_buffer_.push_back(0xEB);
860 code_buffer_.push_back(rel & 0xFF);
861 } else if (entry->opcode == kX86Jmp32) {
862 code_buffer_.push_back(0xE9);
863 code_buffer_.push_back(rel & 0xFF);
864 code_buffer_.push_back((rel >> 8) & 0xFF);
865 code_buffer_.push_back((rel >> 16) & 0xFF);
866 code_buffer_.push_back((rel >> 24) & 0xFF);
867 } else {
868 DCHECK(entry->opcode == kX86JmpR);
869 code_buffer_.push_back(entry->skeleton.opcode);
870 uint8_t reg = static_cast<uint8_t>(rel);
871 DCHECK_LT(reg, 8);
872 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
873 code_buffer_.push_back(modrm);
874 }
875}
876
877void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
878 DCHECK_LT(cc, 16);
879 if (entry->opcode == kX86Jcc8) {
880 DCHECK(IS_SIMM8(rel));
881 code_buffer_.push_back(0x70 | cc);
882 code_buffer_.push_back(rel & 0xFF);
883 } else {
884 DCHECK(entry->opcode == kX86Jcc32);
885 code_buffer_.push_back(0x0F);
886 code_buffer_.push_back(0x80 | cc);
887 code_buffer_.push_back(rel & 0xFF);
888 code_buffer_.push_back((rel >> 8) & 0xFF);
889 code_buffer_.push_back((rel >> 16) & 0xFF);
890 code_buffer_.push_back((rel >> 24) & 0xFF);
891 }
892}
893
894void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000895 EmitPrefixAndOpcode(entry);
896 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700897 DCHECK_EQ(0, entry->skeleton.ax_opcode);
898 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
899}
900
901void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
902 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000903 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700904 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
905 code_buffer_.push_back(modrm);
906 code_buffer_.push_back(disp & 0xFF);
907 code_buffer_.push_back((disp >> 8) & 0xFF);
908 code_buffer_.push_back((disp >> 16) & 0xFF);
909 code_buffer_.push_back((disp >> 24) & 0xFF);
910 DCHECK_EQ(0, entry->skeleton.ax_opcode);
911 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
912}
913
914void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
915 int base_or_table, uint8_t index, int scale, int table_or_disp) {
916 int disp;
917 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700918 Mir2Lir::EmbeddedData *tab_rec =
919 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700920 disp = tab_rec->offset;
921 } else {
922 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700923 Mir2Lir::EmbeddedData *tab_rec =
924 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700925 disp = tab_rec->offset;
926 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000927 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700928 if (X86_FPREG(reg)) {
929 reg = reg & X86_FP_REG_MASK;
930 }
931 DCHECK_LT(reg, 8);
932 if (entry->opcode == kX86PcRelLoadRA) {
933 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000934 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700935 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
936 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
937 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
938 code_buffer_.push_back(modrm);
939 DCHECK_LT(scale, 4);
940 DCHECK_LT(index, 8);
941 DCHECK_LT(base_or_table, 8);
942 uint8_t base = static_cast<uint8_t>(base_or_table);
943 uint8_t sib = (scale << 6) | (index << 3) | base;
944 code_buffer_.push_back(sib);
945 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
946 } else {
947 code_buffer_.push_back(entry->skeleton.opcode + reg);
948 }
949 code_buffer_.push_back(disp & 0xFF);
950 code_buffer_.push_back((disp >> 8) & 0xFF);
951 code_buffer_.push_back((disp >> 16) & 0xFF);
952 code_buffer_.push_back((disp >> 24) & 0xFF);
953 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
954 DCHECK_EQ(0, entry->skeleton.ax_opcode);
955}
956
957void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
958 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
959 code_buffer_.push_back(0xE8); // call +0
960 code_buffer_.push_back(0);
961 code_buffer_.push_back(0);
962 code_buffer_.push_back(0);
963 code_buffer_.push_back(0);
964
965 DCHECK_LT(reg, 8);
966 code_buffer_.push_back(0x58 + reg); // pop reg
967
968 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
969}
970
971void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
972 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
973 << BuildInsnString(entry->fmt, lir, 0);
974 for (int i = 0; i < GetInsnSize(lir); ++i) {
975 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
976 }
977}
978
979/*
980 * Assemble the LIR into binary instruction format. Note that we may
981 * discover that pc-relative displacements may not fit the selected
982 * instruction. In those cases we will try to substitute a new code
983 * sequence or request that the trace be shortened and retried.
984 */
buzbee0d829482013-10-11 15:24:55 -0700985AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700986 LIR *lir;
987 AssemblerStatus res = kSuccess; // Assume success
988
989 const bool kVerbosePcFixup = false;
990 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -0700991 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700992 continue;
993 }
994
995 if (lir->flags.is_nop) {
996 continue;
997 }
998
buzbeeb48819d2013-09-14 16:15:25 -0700999 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001000 switch (lir->opcode) {
1001 case kX86Jcc8: {
1002 LIR *target_lir = lir->target;
1003 DCHECK(target_lir != NULL);
1004 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001005 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001006 if (IS_SIMM8(lir->operands[0])) {
1007 pc = lir->offset + 2 /* opcode + rel8 */;
1008 } else {
1009 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1010 }
buzbee0d829482013-10-11 15:24:55 -07001011 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001012 delta = target - pc;
1013 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1014 if (kVerbosePcFixup) {
1015 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1016 << " delta: " << delta << " old delta: " << lir->operands[0];
1017 }
1018 lir->opcode = kX86Jcc32;
1019 SetupResourceMasks(lir);
1020 res = kRetryAll;
1021 }
1022 if (kVerbosePcFixup) {
1023 LOG(INFO) << "Source:";
1024 DumpLIRInsn(lir, 0);
1025 LOG(INFO) << "Target:";
1026 DumpLIRInsn(target_lir, 0);
1027 LOG(INFO) << "Delta " << delta;
1028 }
1029 lir->operands[0] = delta;
1030 break;
1031 }
1032 case kX86Jcc32: {
1033 LIR *target_lir = lir->target;
1034 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001035 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1036 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001037 int delta = target - pc;
1038 if (kVerbosePcFixup) {
1039 LOG(INFO) << "Source:";
1040 DumpLIRInsn(lir, 0);
1041 LOG(INFO) << "Target:";
1042 DumpLIRInsn(target_lir, 0);
1043 LOG(INFO) << "Delta " << delta;
1044 }
1045 lir->operands[0] = delta;
1046 break;
1047 }
1048 case kX86Jmp8: {
1049 LIR *target_lir = lir->target;
1050 DCHECK(target_lir != NULL);
1051 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001052 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001053 if (IS_SIMM8(lir->operands[0])) {
1054 pc = lir->offset + 2 /* opcode + rel8 */;
1055 } else {
1056 pc = lir->offset + 5 /* opcode + rel32 */;
1057 }
buzbee0d829482013-10-11 15:24:55 -07001058 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001059 delta = target - pc;
1060 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1061 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001062 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001063 if (kVerbosePcFixup) {
1064 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1065 }
1066 res = kRetryAll;
1067 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1068 if (kVerbosePcFixup) {
1069 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1070 }
1071 lir->opcode = kX86Jmp32;
1072 SetupResourceMasks(lir);
1073 res = kRetryAll;
1074 }
1075 lir->operands[0] = delta;
1076 break;
1077 }
1078 case kX86Jmp32: {
1079 LIR *target_lir = lir->target;
1080 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001081 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1082 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001083 int delta = target - pc;
1084 lir->operands[0] = delta;
1085 break;
1086 }
1087 default:
1088 break;
1089 }
1090 }
1091
1092 /*
1093 * If one of the pc-relative instructions expanded we'll have
1094 * to make another pass. Don't bother to fully assemble the
1095 * instruction.
1096 */
1097 if (res != kSuccess) {
1098 continue;
1099 }
1100 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1101 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1102 size_t starting_cbuf_size = code_buffer_.size();
1103 switch (entry->kind) {
1104 case kData: // 4 bytes of data
1105 code_buffer_.push_back(lir->operands[0]);
1106 break;
1107 case kNullary: // 1 byte of opcode
1108 DCHECK_EQ(0, entry->skeleton.prefix1);
1109 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001110 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001111 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1112 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1113 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1114 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001115 case kRegOpcode: // lir operands - 0: reg
1116 EmitOpRegOpcode(entry, lir->operands[0]);
1117 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001118 case kReg: // lir operands - 0: reg
1119 EmitOpReg(entry, lir->operands[0]);
1120 break;
1121 case kMem: // lir operands - 0: base, 1: disp
1122 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1123 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001124 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1125 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1126 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001127 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1128 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1129 break;
1130 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1131 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1132 lir->operands[3], lir->operands[4]);
1133 break;
1134 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1135 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1136 break;
1137 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1138 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1139 lir->operands[3], lir->operands[4]);
1140 break;
1141 case kRegThread: // lir operands - 0: reg, 1: disp
1142 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1143 break;
1144 case kRegReg: // lir operands - 0: reg1, 1: reg2
1145 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1146 break;
1147 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1148 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1149 break;
1150 case kRegRegImm:
1151 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1152 break;
1153 case kRegImm: // lir operands - 0: reg, 1: immediate
1154 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1155 break;
1156 case kThreadImm: // lir operands - 0: disp, 1: immediate
1157 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1158 break;
1159 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1160 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1161 break;
1162 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1163 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1164 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001165 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001166 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1167 break;
1168 case kRegCond: // lir operands - 0: reg, 1: condition
1169 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1170 break;
1171 case kJmp: // lir operands - 0: rel
1172 EmitJmp(entry, lir->operands[0]);
1173 break;
1174 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1175 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1176 break;
1177 case kCall:
1178 switch (entry->opcode) {
1179 case kX86CallM: // lir operands - 0: base, 1: disp
1180 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1181 break;
1182 case kX86CallT: // lir operands - 0: disp
1183 EmitCallThread(entry, lir->operands[0]);
1184 break;
1185 default:
1186 EmitUnimplemented(entry, lir);
1187 break;
1188 }
1189 break;
1190 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1191 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1192 lir->operands[3], lir->operands[4]);
1193 break;
1194 case kMacro:
1195 EmitMacro(entry, lir->operands[0], lir->offset);
1196 break;
1197 default:
1198 EmitUnimplemented(entry, lir);
1199 break;
1200 }
1201 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1202 code_buffer_.size() - starting_cbuf_size)
1203 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1204 }
1205 return res;
1206}
1207
buzbeeb48819d2013-09-14 16:15:25 -07001208// LIR offset assignment.
1209// TODO: consolidate w/ Arm assembly mechanism.
1210int X86Mir2Lir::AssignInsnOffsets() {
1211 LIR* lir;
1212 int offset = 0;
1213
1214 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1215 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001216 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001217 if (!lir->flags.is_nop) {
1218 offset += lir->flags.size;
1219 }
1220 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1221 if (offset & 0x2) {
1222 offset += 2;
1223 lir->operands[0] = 1;
1224 } else {
1225 lir->operands[0] = 0;
1226 }
1227 }
1228 /* Pseudo opcodes don't consume space */
1229 }
1230 return offset;
1231}
1232
1233/*
1234 * Walk the compilation unit and assign offsets to instructions
1235 * and literals and compute the total size of the compiled unit.
1236 * TODO: consolidate w/ Arm assembly mechanism.
1237 */
1238void X86Mir2Lir::AssignOffsets() {
1239 int offset = AssignInsnOffsets();
1240
1241 /* Const values have to be word aligned */
1242 offset = (offset + 3) & ~3;
1243
1244 /* Set up offsets for literals */
1245 data_offset_ = offset;
1246
1247 offset = AssignLiteralOffset(offset);
1248
1249 offset = AssignSwitchTablesOffset(offset);
1250
1251 offset = AssignFillArrayDataOffset(offset);
1252
1253 total_size_ = offset;
1254}
1255
1256/*
1257 * Go over each instruction in the list and calculate the offset from the top
1258 * before sending them off to the assembler. If out-of-range branch distance is
1259 * seen rearrange the instructions a bit to correct it.
1260 * TODO: consolidate w/ Arm assembly mechanism.
1261 */
1262void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001263 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001264 AssignOffsets();
1265 int assembler_retries = 0;
1266 /*
1267 * Assemble here. Note that we generate code with optimistic assumptions
1268 * and if found now to work, we'll have to redo the sequence and retry.
1269 */
1270
1271 while (true) {
1272 AssemblerStatus res = AssembleInstructions(0);
1273 if (res == kSuccess) {
1274 break;
1275 } else {
1276 assembler_retries++;
1277 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1278 CodegenDump();
1279 LOG(FATAL) << "Assembler error - too many retries";
1280 }
1281 // Redo offsets and try again
1282 AssignOffsets();
1283 code_buffer_.clear();
1284 }
1285 }
1286
1287 // Install literals
1288 InstallLiteralPools();
1289
1290 // Install switch tables
1291 InstallSwitchTables();
1292
1293 // Install fill array data
1294 InstallFillArrayData();
1295
1296 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001297 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001298 CreateMappingTables();
1299
buzbeea61f4952013-08-23 14:27:06 -07001300 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001301 CreateNativeGcMap();
1302}
1303
Brian Carlstrom7940e442013-07-12 13:46:57 -07001304} // namespace art