blob: 92d58d5f3c723ac917d5b684fafbe94735ed6838 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
180#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
181{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
182{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
183{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
184{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
185{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
186{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
187 \
188{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
189{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
190{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
191{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
192{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
193{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
194 \
195{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
196{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
197{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
198{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
199{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
200{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
201
202 SHIFT_ENCODING_MAP(Rol, 0x0),
203 SHIFT_ENCODING_MAP(Ror, 0x1),
204 SHIFT_ENCODING_MAP(Rcl, 0x2),
205 SHIFT_ENCODING_MAP(Rcr, 0x3),
206 SHIFT_ENCODING_MAP(Sal, 0x4),
207 SHIFT_ENCODING_MAP(Shr, 0x5),
208 SHIFT_ENCODING_MAP(Sar, 0x7),
209#undef SHIFT_ENCODING_MAP
210
211 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
212
213 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
214 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
215 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
216 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
217 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
218 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
219 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
220 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
221 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
222 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
223
224#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
225 reg, reg_kind, reg_flags, \
226 mem, mem_kind, mem_flags, \
227 arr, arr_kind, arr_flags, imm, \
228 b_flags, hw_flags, w_flags, \
229 b_format, hw_format, w_format) \
230{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
231{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
232{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
233{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
234{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
235{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
236{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
237{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
239
240 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
241 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
242
243 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
244 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
245 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
246 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
247#undef UNARY_ENCODING_MAP
248
249#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
250{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
251{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
252{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
253
254 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
255 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
256 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
257
258 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
259 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
260 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
261
262 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
263 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
264 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
265 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
266 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
267 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
268 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
269 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
270 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
271 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
272 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
278 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
279 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
284
285 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
286 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
287
288 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
289 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
290 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
291 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
292
293 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
294 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
295 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
296
297 // TODO: load/store?
298 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
299 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
300
301 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
302 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
303
304 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
305 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
306 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
307 { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" },
308 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
309 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
310
311 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
312 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
313 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
314 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
315#undef EXT_0F_ENCODING_MAP
316
317 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
318 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
319 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
320 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
321 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
322 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
323 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
324 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
325 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700326 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700327
328 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
329 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
330 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
331};
332
333static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
334 size_t size = 0;
335 if (entry->skeleton.prefix1 > 0) {
336 ++size;
337 if (entry->skeleton.prefix2 > 0) {
338 ++size;
339 }
340 }
341 ++size; // opcode
342 if (entry->skeleton.opcode == 0x0F) {
343 ++size;
344 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
345 ++size;
346 }
347 }
348 ++size; // modrm
349 if (has_sib || base == rX86_SP) {
350 // SP requires a SIB byte.
351 ++size;
352 }
353 if (displacement != 0 || base == rBP) {
354 // BP requires an explicit displacement, even when it's 0.
355 if (entry->opcode != kX86Lea32RA) {
356 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
357 }
358 size += IS_SIMM8(displacement) ? 1 : 4;
359 }
360 size += entry->skeleton.immediate_bytes;
361 return size;
362}
363
364int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700365 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700366 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
367 switch (entry->kind) {
368 case kData:
369 return 4; // 4 bytes of data
370 case kNop:
371 return lir->operands[0]; // length of nop is sole operand
372 case kNullary:
373 return 1; // 1 byte of opcode
374 case kReg: // lir operands - 0: reg
375 return ComputeSize(entry, 0, 0, false);
376 case kMem: // lir operands - 0: base, 1: disp
377 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
378 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
379 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
380 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
381 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
382 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
383 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
384 case kThreadReg: // lir operands - 0: disp, 1: reg
385 return ComputeSize(entry, 0, lir->operands[0], false);
386 case kRegReg:
387 return ComputeSize(entry, 0, 0, false);
388 case kRegRegStore:
389 return ComputeSize(entry, 0, 0, false);
390 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
391 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
392 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
393 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
394 case kRegThread: // lir operands - 0: reg, 1: disp
395 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
396 case kRegImm: { // lir operands - 0: reg, 1: immediate
397 size_t size = ComputeSize(entry, 0, 0, false);
398 if (entry->skeleton.ax_opcode == 0) {
399 return size;
400 } else {
401 // AX opcodes don't require the modrm byte.
402 int reg = lir->operands[0];
403 return size - (reg == rAX ? 1 : 0);
404 }
405 }
406 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
407 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
408 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
409 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
410 case kThreadImm: // lir operands - 0: disp, 1: imm
411 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
412 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
413 return ComputeSize(entry, 0, 0, false);
414 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
415 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
416 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
417 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
418 case kMovRegImm: // lir operands - 0: reg, 1: immediate
419 return 1 + entry->skeleton.immediate_bytes;
420 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
421 // Shift by immediate one has a shorter opcode.
422 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
423 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
424 // Shift by immediate one has a shorter opcode.
425 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
426 (lir->operands[2] == 1 ? 1 : 0);
427 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
428 // Shift by immediate one has a shorter opcode.
429 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
430 (lir->operands[4] == 1 ? 1 : 0);
431 case kShiftRegCl:
432 return ComputeSize(entry, 0, 0, false);
433 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
434 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
435 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
436 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
437 case kRegCond: // lir operands - 0: reg, 1: cond
438 return ComputeSize(entry, 0, 0, false);
439 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
440 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
441 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
442 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
443 case kJcc:
444 if (lir->opcode == kX86Jcc8) {
445 return 2; // opcode + rel8
446 } else {
447 DCHECK(lir->opcode == kX86Jcc32);
448 return 6; // 2 byte opcode + rel32
449 }
450 case kJmp:
451 if (lir->opcode == kX86Jmp8) {
452 return 2; // opcode + rel8
453 } else if (lir->opcode == kX86Jmp32) {
454 return 5; // opcode + rel32
455 } else {
456 DCHECK(lir->opcode == kX86JmpR);
457 return 2; // opcode + modrm
458 }
459 case kCall:
460 switch (lir->opcode) {
461 case kX86CallR: return 2; // opcode modrm
462 case kX86CallM: // lir operands - 0: base, 1: disp
463 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
464 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
465 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
466 case kX86CallT: // lir operands - 0: disp
467 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
468 default:
469 break;
470 }
471 break;
472 case kPcRel:
473 if (entry->opcode == kX86PcRelLoadRA) {
474 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
475 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
476 } else {
477 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700478 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700479 }
480 case kMacro:
481 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
482 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
483 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
484 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
485 default:
486 break;
487 }
488 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
489 return 0;
490}
491
492static uint8_t ModrmForDisp(int base, int disp) {
493 // BP requires an explicit disp, so do not omit it in the 0 case
494 if (disp == 0 && base != rBP) {
495 return 0;
496 } else if (IS_SIMM8(disp)) {
497 return 1;
498 } else {
499 return 2;
500 }
501}
502
503void X86Mir2Lir::EmitDisp(int base, int disp) {
504 // BP requires an explicit disp, so do not omit it in the 0 case
505 if (disp == 0 && base != rBP) {
506 return;
507 } else if (IS_SIMM8(disp)) {
508 code_buffer_.push_back(disp & 0xFF);
509 } else {
510 code_buffer_.push_back(disp & 0xFF);
511 code_buffer_.push_back((disp >> 8) & 0xFF);
512 code_buffer_.push_back((disp >> 16) & 0xFF);
513 code_buffer_.push_back((disp >> 24) & 0xFF);
514 }
515}
516
517void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
518 if (entry->skeleton.prefix1 != 0) {
519 code_buffer_.push_back(entry->skeleton.prefix1);
520 if (entry->skeleton.prefix2 != 0) {
521 code_buffer_.push_back(entry->skeleton.prefix2);
522 }
523 } else {
524 DCHECK_EQ(0, entry->skeleton.prefix2);
525 }
526 code_buffer_.push_back(entry->skeleton.opcode);
527 if (entry->skeleton.opcode == 0x0F) {
528 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100529 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700530 code_buffer_.push_back(entry->skeleton.extra_opcode2);
531 } else {
532 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
533 }
534 } else {
535 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
536 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
537 }
538 if (X86_FPREG(reg)) {
539 reg = reg & X86_FP_REG_MASK;
540 }
541 if (reg >= 4) {
542 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
543 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
544 }
545 DCHECK_LT(reg, 8);
546 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
547 code_buffer_.push_back(modrm);
548 DCHECK_EQ(0, entry->skeleton.ax_opcode);
549 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
550}
551
552void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
553 if (entry->skeleton.prefix1 != 0) {
554 code_buffer_.push_back(entry->skeleton.prefix1);
555 if (entry->skeleton.prefix2 != 0) {
556 code_buffer_.push_back(entry->skeleton.prefix2);
557 }
558 } else {
559 DCHECK_EQ(0, entry->skeleton.prefix2);
560 }
561 code_buffer_.push_back(entry->skeleton.opcode);
562 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
563 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
564 DCHECK_LT(entry->skeleton.modrm_opcode, 8);
565 DCHECK_LT(base, 8);
566 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
567 code_buffer_.push_back(modrm);
568 EmitDisp(base, disp);
569 DCHECK_EQ(0, entry->skeleton.ax_opcode);
570 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
571}
572
573void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
574 uint8_t base, int disp, uint8_t reg) {
575 if (entry->skeleton.prefix1 != 0) {
576 code_buffer_.push_back(entry->skeleton.prefix1);
577 if (entry->skeleton.prefix2 != 0) {
578 code_buffer_.push_back(entry->skeleton.prefix2);
579 }
580 } else {
581 DCHECK_EQ(0, entry->skeleton.prefix2);
582 }
583 code_buffer_.push_back(entry->skeleton.opcode);
584 if (entry->skeleton.opcode == 0x0F) {
585 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100586 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700587 code_buffer_.push_back(entry->skeleton.extra_opcode2);
588 } else {
589 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
590 }
591 } else {
592 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
593 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
594 }
595 if (X86_FPREG(reg)) {
596 reg = reg & X86_FP_REG_MASK;
597 }
598 if (reg >= 4) {
Vladimir Marko17088bb2013-10-28 13:55:34 +0000599 DCHECK(strchr(entry->name, '8') == NULL ||
600 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
601 << entry->name << " " << static_cast<int>(reg)
Brian Carlstrom7940e442013-07-12 13:46:57 -0700602 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
603 }
604 DCHECK_LT(reg, 8);
605 DCHECK_LT(base, 8);
606 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base;
607 code_buffer_.push_back(modrm);
608 if (base == rX86_SP) {
609 // Special SIB for SP base
610 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
611 }
612 EmitDisp(base, disp);
613 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
614 DCHECK_EQ(0, entry->skeleton.ax_opcode);
615 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
616}
617
618void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
619 uint8_t reg, uint8_t base, int disp) {
620 // Opcode will flip operands.
621 EmitMemReg(entry, base, disp, reg);
622}
623
624void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
625 int scale, int disp) {
626 if (entry->skeleton.prefix1 != 0) {
627 code_buffer_.push_back(entry->skeleton.prefix1);
628 if (entry->skeleton.prefix2 != 0) {
629 code_buffer_.push_back(entry->skeleton.prefix2);
630 }
631 } else {
632 DCHECK_EQ(0, entry->skeleton.prefix2);
633 }
634 code_buffer_.push_back(entry->skeleton.opcode);
635 if (entry->skeleton.opcode == 0x0F) {
636 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100637 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700638 code_buffer_.push_back(entry->skeleton.extra_opcode2);
639 } else {
640 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
641 }
642 } else {
643 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
644 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
645 }
646 if (X86_FPREG(reg)) {
647 reg = reg & X86_FP_REG_MASK;
648 }
649 DCHECK_LT(reg, 8);
650 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP;
651 code_buffer_.push_back(modrm);
652 DCHECK_LT(scale, 4);
653 DCHECK_LT(index, 8);
654 DCHECK_LT(base, 8);
655 uint8_t sib = (scale << 6) | (index << 3) | base;
656 code_buffer_.push_back(sib);
657 EmitDisp(base, disp);
658 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
659 DCHECK_EQ(0, entry->skeleton.ax_opcode);
660 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
661}
662
663void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
664 uint8_t reg) {
665 // Opcode will flip operands.
666 EmitRegArray(entry, reg, base, index, scale, disp);
667}
668
669void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
670 DCHECK_NE(entry->skeleton.prefix1, 0);
671 code_buffer_.push_back(entry->skeleton.prefix1);
672 if (entry->skeleton.prefix2 != 0) {
673 code_buffer_.push_back(entry->skeleton.prefix2);
674 }
675 code_buffer_.push_back(entry->skeleton.opcode);
676 if (entry->skeleton.opcode == 0x0F) {
677 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100678 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700679 code_buffer_.push_back(entry->skeleton.extra_opcode2);
680 } else {
681 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
682 }
683 } else {
684 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
685 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
686 }
687 if (X86_FPREG(reg)) {
688 reg = reg & X86_FP_REG_MASK;
689 }
690 if (reg >= 4) {
691 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
692 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
693 }
694 DCHECK_LT(reg, 8);
695 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
696 code_buffer_.push_back(modrm);
697 code_buffer_.push_back(disp & 0xFF);
698 code_buffer_.push_back((disp >> 8) & 0xFF);
699 code_buffer_.push_back((disp >> 16) & 0xFF);
700 code_buffer_.push_back((disp >> 24) & 0xFF);
701 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
702 DCHECK_EQ(0, entry->skeleton.ax_opcode);
703 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
704}
705
706void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
707 if (entry->skeleton.prefix1 != 0) {
708 code_buffer_.push_back(entry->skeleton.prefix1);
709 if (entry->skeleton.prefix2 != 0) {
710 code_buffer_.push_back(entry->skeleton.prefix2);
711 }
712 } else {
713 DCHECK_EQ(0, entry->skeleton.prefix2);
714 }
715 code_buffer_.push_back(entry->skeleton.opcode);
716 if (entry->skeleton.opcode == 0x0F) {
717 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100718 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700719 code_buffer_.push_back(entry->skeleton.extra_opcode2);
720 } else {
721 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
722 }
723 } else {
724 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
725 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
726 }
727 if (X86_FPREG(reg1)) {
728 reg1 = reg1 & X86_FP_REG_MASK;
729 }
730 if (X86_FPREG(reg2)) {
731 reg2 = reg2 & X86_FP_REG_MASK;
732 }
733 DCHECK_LT(reg1, 8);
734 DCHECK_LT(reg2, 8);
735 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
736 code_buffer_.push_back(modrm);
737 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
738 DCHECK_EQ(0, entry->skeleton.ax_opcode);
739 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
740}
741
742void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
743 uint8_t reg1, uint8_t reg2, int32_t imm) {
744 if (entry->skeleton.prefix1 != 0) {
745 code_buffer_.push_back(entry->skeleton.prefix1);
746 if (entry->skeleton.prefix2 != 0) {
747 code_buffer_.push_back(entry->skeleton.prefix2);
748 }
749 } else {
750 DCHECK_EQ(0, entry->skeleton.prefix2);
751 }
752 code_buffer_.push_back(entry->skeleton.opcode);
753 if (entry->skeleton.opcode == 0x0F) {
754 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100755 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700756 code_buffer_.push_back(entry->skeleton.extra_opcode2);
757 } else {
758 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
759 }
760 } else {
761 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
762 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
763 }
764 if (X86_FPREG(reg1)) {
765 reg1 = reg1 & X86_FP_REG_MASK;
766 }
767 if (X86_FPREG(reg2)) {
768 reg2 = reg2 & X86_FP_REG_MASK;
769 }
770 DCHECK_LT(reg1, 8);
771 DCHECK_LT(reg2, 8);
772 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
773 code_buffer_.push_back(modrm);
774 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
775 DCHECK_EQ(0, entry->skeleton.ax_opcode);
776 switch (entry->skeleton.immediate_bytes) {
777 case 1:
778 DCHECK(IS_SIMM8(imm));
779 code_buffer_.push_back(imm & 0xFF);
780 break;
781 case 2:
782 DCHECK(IS_SIMM16(imm));
783 code_buffer_.push_back(imm & 0xFF);
784 code_buffer_.push_back((imm >> 8) & 0xFF);
785 break;
786 case 4:
787 code_buffer_.push_back(imm & 0xFF);
788 code_buffer_.push_back((imm >> 8) & 0xFF);
789 code_buffer_.push_back((imm >> 16) & 0xFF);
790 code_buffer_.push_back((imm >> 24) & 0xFF);
791 break;
792 default:
793 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
794 << ") for instruction: " << entry->name;
795 break;
796 }
797}
798
799void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
800 if (entry->skeleton.prefix1 != 0) {
801 code_buffer_.push_back(entry->skeleton.prefix1);
802 if (entry->skeleton.prefix2 != 0) {
803 code_buffer_.push_back(entry->skeleton.prefix2);
804 }
805 } else {
806 DCHECK_EQ(0, entry->skeleton.prefix2);
807 }
808 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
809 code_buffer_.push_back(entry->skeleton.ax_opcode);
810 } else {
811 code_buffer_.push_back(entry->skeleton.opcode);
812 if (entry->skeleton.opcode == 0x0F) {
813 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100814 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 code_buffer_.push_back(entry->skeleton.extra_opcode2);
816 } else {
817 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
818 }
819 } else {
820 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
821 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
822 }
823 if (X86_FPREG(reg)) {
824 reg = reg & X86_FP_REG_MASK;
825 }
826 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
827 code_buffer_.push_back(modrm);
828 }
829 switch (entry->skeleton.immediate_bytes) {
830 case 1:
831 DCHECK(IS_SIMM8(imm));
832 code_buffer_.push_back(imm & 0xFF);
833 break;
834 case 2:
835 DCHECK(IS_SIMM16(imm));
836 code_buffer_.push_back(imm & 0xFF);
837 code_buffer_.push_back((imm >> 8) & 0xFF);
838 break;
839 case 4:
840 code_buffer_.push_back(imm & 0xFF);
841 code_buffer_.push_back((imm >> 8) & 0xFF);
842 code_buffer_.push_back((imm >> 16) & 0xFF);
843 code_buffer_.push_back((imm >> 24) & 0xFF);
844 break;
845 default:
846 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
847 << ") for instruction: " << entry->name;
848 break;
849 }
850}
851
852void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
853 if (entry->skeleton.prefix1 != 0) {
854 code_buffer_.push_back(entry->skeleton.prefix1);
855 if (entry->skeleton.prefix2 != 0) {
856 code_buffer_.push_back(entry->skeleton.prefix2);
857 }
858 } else {
859 DCHECK_EQ(0, entry->skeleton.prefix2);
860 }
861 code_buffer_.push_back(entry->skeleton.opcode);
862 if (entry->skeleton.opcode == 0x0F) {
863 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100864 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700865 code_buffer_.push_back(entry->skeleton.extra_opcode2);
866 } else {
867 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
868 }
869 } else {
870 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
871 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
872 }
873 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
874 code_buffer_.push_back(modrm);
875 code_buffer_.push_back(disp & 0xFF);
876 code_buffer_.push_back((disp >> 8) & 0xFF);
877 code_buffer_.push_back((disp >> 16) & 0xFF);
878 code_buffer_.push_back((disp >> 24) & 0xFF);
879 switch (entry->skeleton.immediate_bytes) {
880 case 1:
881 DCHECK(IS_SIMM8(imm));
882 code_buffer_.push_back(imm & 0xFF);
883 break;
884 case 2:
885 DCHECK(IS_SIMM16(imm));
886 code_buffer_.push_back(imm & 0xFF);
887 code_buffer_.push_back((imm >> 8) & 0xFF);
888 break;
889 case 4:
890 code_buffer_.push_back(imm & 0xFF);
891 code_buffer_.push_back((imm >> 8) & 0xFF);
892 code_buffer_.push_back((imm >> 16) & 0xFF);
893 code_buffer_.push_back((imm >> 24) & 0xFF);
894 break;
895 default:
896 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
897 << ") for instruction: " << entry->name;
898 break;
899 }
900 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
901}
902
903void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
904 DCHECK_LT(reg, 8);
905 code_buffer_.push_back(0xB8 + reg);
906 code_buffer_.push_back(imm & 0xFF);
907 code_buffer_.push_back((imm >> 8) & 0xFF);
908 code_buffer_.push_back((imm >> 16) & 0xFF);
909 code_buffer_.push_back((imm >> 24) & 0xFF);
910}
911
912void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
913 if (entry->skeleton.prefix1 != 0) {
914 code_buffer_.push_back(entry->skeleton.prefix1);
915 if (entry->skeleton.prefix2 != 0) {
916 code_buffer_.push_back(entry->skeleton.prefix2);
917 }
918 } else {
919 DCHECK_EQ(0, entry->skeleton.prefix2);
920 }
921 if (imm != 1) {
922 code_buffer_.push_back(entry->skeleton.opcode);
923 } else {
924 // Shorter encoding for 1 bit shift
925 code_buffer_.push_back(entry->skeleton.ax_opcode);
926 }
927 if (entry->skeleton.opcode == 0x0F) {
928 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +0100929 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700930 code_buffer_.push_back(entry->skeleton.extra_opcode2);
931 } else {
932 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
933 }
934 } else {
935 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
936 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
937 }
938 if (reg >= 4) {
939 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
940 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
941 }
942 DCHECK_LT(reg, 8);
943 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
944 code_buffer_.push_back(modrm);
945 if (imm != 1) {
946 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
947 DCHECK(IS_SIMM8(imm));
948 code_buffer_.push_back(imm & 0xFF);
949 }
950}
951
952void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
953 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
954 if (entry->skeleton.prefix1 != 0) {
955 code_buffer_.push_back(entry->skeleton.prefix1);
956 if (entry->skeleton.prefix2 != 0) {
957 code_buffer_.push_back(entry->skeleton.prefix2);
958 }
959 } else {
960 DCHECK_EQ(0, entry->skeleton.prefix2);
961 }
962 code_buffer_.push_back(entry->skeleton.opcode);
963 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
964 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
965 DCHECK_LT(reg, 8);
966 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
967 code_buffer_.push_back(modrm);
968 DCHECK_EQ(0, entry->skeleton.ax_opcode);
969 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
970}
971
972void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
973 if (entry->skeleton.prefix1 != 0) {
974 code_buffer_.push_back(entry->skeleton.prefix1);
975 if (entry->skeleton.prefix2 != 0) {
976 code_buffer_.push_back(entry->skeleton.prefix2);
977 }
978 } else {
979 DCHECK_EQ(0, entry->skeleton.prefix2);
980 }
981 DCHECK_EQ(0, entry->skeleton.ax_opcode);
982 DCHECK_EQ(0x0F, entry->skeleton.opcode);
983 code_buffer_.push_back(0x0F);
984 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
985 code_buffer_.push_back(0x90 | condition);
986 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
987 DCHECK_LT(reg, 8);
988 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
989 code_buffer_.push_back(modrm);
990 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
991}
992
993void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
994 if (entry->opcode == kX86Jmp8) {
995 DCHECK(IS_SIMM8(rel));
996 code_buffer_.push_back(0xEB);
997 code_buffer_.push_back(rel & 0xFF);
998 } else if (entry->opcode == kX86Jmp32) {
999 code_buffer_.push_back(0xE9);
1000 code_buffer_.push_back(rel & 0xFF);
1001 code_buffer_.push_back((rel >> 8) & 0xFF);
1002 code_buffer_.push_back((rel >> 16) & 0xFF);
1003 code_buffer_.push_back((rel >> 24) & 0xFF);
1004 } else {
1005 DCHECK(entry->opcode == kX86JmpR);
1006 code_buffer_.push_back(entry->skeleton.opcode);
1007 uint8_t reg = static_cast<uint8_t>(rel);
1008 DCHECK_LT(reg, 8);
1009 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
1010 code_buffer_.push_back(modrm);
1011 }
1012}
1013
1014void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
1015 DCHECK_LT(cc, 16);
1016 if (entry->opcode == kX86Jcc8) {
1017 DCHECK(IS_SIMM8(rel));
1018 code_buffer_.push_back(0x70 | cc);
1019 code_buffer_.push_back(rel & 0xFF);
1020 } else {
1021 DCHECK(entry->opcode == kX86Jcc32);
1022 code_buffer_.push_back(0x0F);
1023 code_buffer_.push_back(0x80 | cc);
1024 code_buffer_.push_back(rel & 0xFF);
1025 code_buffer_.push_back((rel >> 8) & 0xFF);
1026 code_buffer_.push_back((rel >> 16) & 0xFF);
1027 code_buffer_.push_back((rel >> 24) & 0xFF);
1028 }
1029}
1030
1031void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
1032 if (entry->skeleton.prefix1 != 0) {
1033 code_buffer_.push_back(entry->skeleton.prefix1);
1034 if (entry->skeleton.prefix2 != 0) {
1035 code_buffer_.push_back(entry->skeleton.prefix2);
1036 }
1037 } else {
1038 DCHECK_EQ(0, entry->skeleton.prefix2);
1039 }
1040 code_buffer_.push_back(entry->skeleton.opcode);
1041 if (entry->skeleton.opcode == 0x0F) {
1042 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +01001043 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001044 code_buffer_.push_back(entry->skeleton.extra_opcode2);
1045 } else {
1046 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1047 }
1048 } else {
1049 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1050 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1051 }
1052 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base;
1053 code_buffer_.push_back(modrm);
1054 if (base == rX86_SP) {
1055 // Special SIB for SP base
1056 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
1057 }
1058 EmitDisp(base, disp);
1059 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1060 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1061}
1062
1063void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
1064 DCHECK_NE(entry->skeleton.prefix1, 0);
1065 code_buffer_.push_back(entry->skeleton.prefix1);
1066 if (entry->skeleton.prefix2 != 0) {
1067 code_buffer_.push_back(entry->skeleton.prefix2);
1068 }
1069 code_buffer_.push_back(entry->skeleton.opcode);
1070 if (entry->skeleton.opcode == 0x0F) {
1071 code_buffer_.push_back(entry->skeleton.extra_opcode1);
Vladimir Markoe6ed00b2013-10-24 14:52:37 +01001072 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001073 code_buffer_.push_back(entry->skeleton.extra_opcode2);
1074 } else {
1075 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1076 }
1077 } else {
1078 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1079 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1080 }
1081 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
1082 code_buffer_.push_back(modrm);
1083 code_buffer_.push_back(disp & 0xFF);
1084 code_buffer_.push_back((disp >> 8) & 0xFF);
1085 code_buffer_.push_back((disp >> 16) & 0xFF);
1086 code_buffer_.push_back((disp >> 24) & 0xFF);
1087 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1088 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1089}
1090
1091void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1092 int base_or_table, uint8_t index, int scale, int table_or_disp) {
1093 int disp;
1094 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -07001095 Mir2Lir::EmbeddedData *tab_rec =
1096 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001097 disp = tab_rec->offset;
1098 } else {
1099 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -07001100 Mir2Lir::EmbeddedData *tab_rec =
1101 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001102 disp = tab_rec->offset;
1103 }
1104 if (entry->skeleton.prefix1 != 0) {
1105 code_buffer_.push_back(entry->skeleton.prefix1);
1106 if (entry->skeleton.prefix2 != 0) {
1107 code_buffer_.push_back(entry->skeleton.prefix2);
1108 }
1109 } else {
1110 DCHECK_EQ(0, entry->skeleton.prefix2);
1111 }
1112 if (X86_FPREG(reg)) {
1113 reg = reg & X86_FP_REG_MASK;
1114 }
1115 DCHECK_LT(reg, 8);
1116 if (entry->opcode == kX86PcRelLoadRA) {
1117 code_buffer_.push_back(entry->skeleton.opcode);
1118 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1119 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1120 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1121 code_buffer_.push_back(modrm);
1122 DCHECK_LT(scale, 4);
1123 DCHECK_LT(index, 8);
1124 DCHECK_LT(base_or_table, 8);
1125 uint8_t base = static_cast<uint8_t>(base_or_table);
1126 uint8_t sib = (scale << 6) | (index << 3) | base;
1127 code_buffer_.push_back(sib);
1128 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1129 } else {
1130 code_buffer_.push_back(entry->skeleton.opcode + reg);
1131 }
1132 code_buffer_.push_back(disp & 0xFF);
1133 code_buffer_.push_back((disp >> 8) & 0xFF);
1134 code_buffer_.push_back((disp >> 16) & 0xFF);
1135 code_buffer_.push_back((disp >> 24) & 0xFF);
1136 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1137 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1138}
1139
1140void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1141 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1142 code_buffer_.push_back(0xE8); // call +0
1143 code_buffer_.push_back(0);
1144 code_buffer_.push_back(0);
1145 code_buffer_.push_back(0);
1146 code_buffer_.push_back(0);
1147
1148 DCHECK_LT(reg, 8);
1149 code_buffer_.push_back(0x58 + reg); // pop reg
1150
1151 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1152}
1153
1154void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1155 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1156 << BuildInsnString(entry->fmt, lir, 0);
1157 for (int i = 0; i < GetInsnSize(lir); ++i) {
1158 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1159 }
1160}
1161
1162/*
1163 * Assemble the LIR into binary instruction format. Note that we may
1164 * discover that pc-relative displacements may not fit the selected
1165 * instruction. In those cases we will try to substitute a new code
1166 * sequence or request that the trace be shortened and retried.
1167 */
buzbee0d829482013-10-11 15:24:55 -07001168AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001169 LIR *lir;
1170 AssemblerStatus res = kSuccess; // Assume success
1171
1172 const bool kVerbosePcFixup = false;
1173 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001174 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001175 continue;
1176 }
1177
1178 if (lir->flags.is_nop) {
1179 continue;
1180 }
1181
buzbeeb48819d2013-09-14 16:15:25 -07001182 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001183 switch (lir->opcode) {
1184 case kX86Jcc8: {
1185 LIR *target_lir = lir->target;
1186 DCHECK(target_lir != NULL);
1187 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001188 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001189 if (IS_SIMM8(lir->operands[0])) {
1190 pc = lir->offset + 2 /* opcode + rel8 */;
1191 } else {
1192 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1193 }
buzbee0d829482013-10-11 15:24:55 -07001194 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001195 delta = target - pc;
1196 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1197 if (kVerbosePcFixup) {
1198 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1199 << " delta: " << delta << " old delta: " << lir->operands[0];
1200 }
1201 lir->opcode = kX86Jcc32;
1202 SetupResourceMasks(lir);
1203 res = kRetryAll;
1204 }
1205 if (kVerbosePcFixup) {
1206 LOG(INFO) << "Source:";
1207 DumpLIRInsn(lir, 0);
1208 LOG(INFO) << "Target:";
1209 DumpLIRInsn(target_lir, 0);
1210 LOG(INFO) << "Delta " << delta;
1211 }
1212 lir->operands[0] = delta;
1213 break;
1214 }
1215 case kX86Jcc32: {
1216 LIR *target_lir = lir->target;
1217 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001218 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1219 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001220 int delta = target - pc;
1221 if (kVerbosePcFixup) {
1222 LOG(INFO) << "Source:";
1223 DumpLIRInsn(lir, 0);
1224 LOG(INFO) << "Target:";
1225 DumpLIRInsn(target_lir, 0);
1226 LOG(INFO) << "Delta " << delta;
1227 }
1228 lir->operands[0] = delta;
1229 break;
1230 }
1231 case kX86Jmp8: {
1232 LIR *target_lir = lir->target;
1233 DCHECK(target_lir != NULL);
1234 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001235 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001236 if (IS_SIMM8(lir->operands[0])) {
1237 pc = lir->offset + 2 /* opcode + rel8 */;
1238 } else {
1239 pc = lir->offset + 5 /* opcode + rel32 */;
1240 }
buzbee0d829482013-10-11 15:24:55 -07001241 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001242 delta = target - pc;
1243 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1244 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001245 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001246 if (kVerbosePcFixup) {
1247 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1248 }
1249 res = kRetryAll;
1250 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1251 if (kVerbosePcFixup) {
1252 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1253 }
1254 lir->opcode = kX86Jmp32;
1255 SetupResourceMasks(lir);
1256 res = kRetryAll;
1257 }
1258 lir->operands[0] = delta;
1259 break;
1260 }
1261 case kX86Jmp32: {
1262 LIR *target_lir = lir->target;
1263 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001264 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1265 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001266 int delta = target - pc;
1267 lir->operands[0] = delta;
1268 break;
1269 }
1270 default:
1271 break;
1272 }
1273 }
1274
1275 /*
1276 * If one of the pc-relative instructions expanded we'll have
1277 * to make another pass. Don't bother to fully assemble the
1278 * instruction.
1279 */
1280 if (res != kSuccess) {
1281 continue;
1282 }
1283 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1284 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1285 size_t starting_cbuf_size = code_buffer_.size();
1286 switch (entry->kind) {
1287 case kData: // 4 bytes of data
1288 code_buffer_.push_back(lir->operands[0]);
1289 break;
1290 case kNullary: // 1 byte of opcode
1291 DCHECK_EQ(0, entry->skeleton.prefix1);
1292 DCHECK_EQ(0, entry->skeleton.prefix2);
1293 code_buffer_.push_back(entry->skeleton.opcode);
1294 if (entry->skeleton.extra_opcode1 != 0) {
1295 code_buffer_.push_back(entry->skeleton.extra_opcode1);
1296 if (entry->skeleton.extra_opcode2 != 0) {
1297 code_buffer_.push_back(entry->skeleton.extra_opcode2);
1298 }
1299 } else {
1300 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1301 }
1302 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1303 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1304 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1305 break;
1306 case kReg: // lir operands - 0: reg
1307 EmitOpReg(entry, lir->operands[0]);
1308 break;
1309 case kMem: // lir operands - 0: base, 1: disp
1310 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1311 break;
1312 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1313 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1314 break;
1315 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1316 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1317 lir->operands[3], lir->operands[4]);
1318 break;
1319 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1320 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1321 break;
1322 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1323 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1324 lir->operands[3], lir->operands[4]);
1325 break;
1326 case kRegThread: // lir operands - 0: reg, 1: disp
1327 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1328 break;
1329 case kRegReg: // lir operands - 0: reg1, 1: reg2
1330 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1331 break;
1332 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1333 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1334 break;
1335 case kRegRegImm:
1336 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1337 break;
1338 case kRegImm: // lir operands - 0: reg, 1: immediate
1339 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1340 break;
1341 case kThreadImm: // lir operands - 0: disp, 1: immediate
1342 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1343 break;
1344 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1345 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1346 break;
1347 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1348 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1349 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001350 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001351 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1352 break;
1353 case kRegCond: // lir operands - 0: reg, 1: condition
1354 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1355 break;
1356 case kJmp: // lir operands - 0: rel
1357 EmitJmp(entry, lir->operands[0]);
1358 break;
1359 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1360 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1361 break;
1362 case kCall:
1363 switch (entry->opcode) {
1364 case kX86CallM: // lir operands - 0: base, 1: disp
1365 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1366 break;
1367 case kX86CallT: // lir operands - 0: disp
1368 EmitCallThread(entry, lir->operands[0]);
1369 break;
1370 default:
1371 EmitUnimplemented(entry, lir);
1372 break;
1373 }
1374 break;
1375 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1376 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1377 lir->operands[3], lir->operands[4]);
1378 break;
1379 case kMacro:
1380 EmitMacro(entry, lir->operands[0], lir->offset);
1381 break;
1382 default:
1383 EmitUnimplemented(entry, lir);
1384 break;
1385 }
1386 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1387 code_buffer_.size() - starting_cbuf_size)
1388 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1389 }
1390 return res;
1391}
1392
buzbeeb48819d2013-09-14 16:15:25 -07001393// LIR offset assignment.
1394// TODO: consolidate w/ Arm assembly mechanism.
1395int X86Mir2Lir::AssignInsnOffsets() {
1396 LIR* lir;
1397 int offset = 0;
1398
1399 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1400 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001401 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001402 if (!lir->flags.is_nop) {
1403 offset += lir->flags.size;
1404 }
1405 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1406 if (offset & 0x2) {
1407 offset += 2;
1408 lir->operands[0] = 1;
1409 } else {
1410 lir->operands[0] = 0;
1411 }
1412 }
1413 /* Pseudo opcodes don't consume space */
1414 }
1415 return offset;
1416}
1417
1418/*
1419 * Walk the compilation unit and assign offsets to instructions
1420 * and literals and compute the total size of the compiled unit.
1421 * TODO: consolidate w/ Arm assembly mechanism.
1422 */
1423void X86Mir2Lir::AssignOffsets() {
1424 int offset = AssignInsnOffsets();
1425
1426 /* Const values have to be word aligned */
1427 offset = (offset + 3) & ~3;
1428
1429 /* Set up offsets for literals */
1430 data_offset_ = offset;
1431
1432 offset = AssignLiteralOffset(offset);
1433
1434 offset = AssignSwitchTablesOffset(offset);
1435
1436 offset = AssignFillArrayDataOffset(offset);
1437
1438 total_size_ = offset;
1439}
1440
1441/*
1442 * Go over each instruction in the list and calculate the offset from the top
1443 * before sending them off to the assembler. If out-of-range branch distance is
1444 * seen rearrange the instructions a bit to correct it.
1445 * TODO: consolidate w/ Arm assembly mechanism.
1446 */
1447void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001448 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001449 AssignOffsets();
1450 int assembler_retries = 0;
1451 /*
1452 * Assemble here. Note that we generate code with optimistic assumptions
1453 * and if found now to work, we'll have to redo the sequence and retry.
1454 */
1455
1456 while (true) {
1457 AssemblerStatus res = AssembleInstructions(0);
1458 if (res == kSuccess) {
1459 break;
1460 } else {
1461 assembler_retries++;
1462 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1463 CodegenDump();
1464 LOG(FATAL) << "Assembler error - too many retries";
1465 }
1466 // Redo offsets and try again
1467 AssignOffsets();
1468 code_buffer_.clear();
1469 }
1470 }
1471
buzbeea61f4952013-08-23 14:27:06 -07001472 cu_->NewTimingSplit("LiteralData");
buzbeeb48819d2013-09-14 16:15:25 -07001473 // Install literals
1474 InstallLiteralPools();
1475
1476 // Install switch tables
1477 InstallSwitchTables();
1478
1479 // Install fill array data
1480 InstallFillArrayData();
1481
1482 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001483 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001484 CreateMappingTables();
1485
buzbeea61f4952013-08-23 14:27:06 -07001486 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001487 CreateNativeGcMap();
1488}
1489
Brian Carlstrom7940e442013-07-12 13:46:57 -07001490} // namespace art