blob: 5f04b7d15229a0b72f81afbb9c64b48dd00264b2 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
193
194 // The kMirOpSelect has two variants, one for constants and one for moves.
195 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
196
197 if (is_constant_case) {
198 int true_val = mir->dalvikInsn.vB;
199 int false_val = mir->dalvikInsn.vC;
200 rl_result = EvalLoc(rl_dest, kCoreReg, true);
201
202 /*
203 * 1) When the true case is zero and result_reg is not same as src_reg:
204 * xor result_reg, result_reg
205 * cmp $0, src_reg
206 * mov t1, $false_case
207 * cmovnz result_reg, t1
208 * 2) When the false case is zero and result_reg is not same as src_reg:
209 * xor result_reg, result_reg
210 * cmp $0, src_reg
211 * mov t1, $true_case
212 * cmovz result_reg, t1
213 * 3) All other cases (we do compare first to set eflags):
214 * cmp $0, src_reg
215 * mov result_reg, $true_case
216 * mov t1, $false_case
217 * cmovnz result_reg, t1
218 */
219 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.low_reg == rl_result.low_reg);
220 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
221 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
222 const bool catch_all_case = !(true_zero_case || false_zero_case);
223
224 if (true_zero_case || false_zero_case) {
225 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
226 }
227
228 if (true_zero_case || false_zero_case || catch_all_case) {
229 OpRegImm(kOpCmp, rl_src.low_reg, 0);
230 }
231
232 if (catch_all_case) {
233 OpRegImm(kOpMov, rl_result.low_reg, true_val);
234 }
235
236 if (true_zero_case || false_zero_case || catch_all_case) {
237 int immediateForTemp = false_zero_case ? true_val : false_val;
238 int temp1_reg = AllocTemp();
239 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
240
241 ConditionCode cc = false_zero_case ? kCondEq : kCondNe;
242 OpCondRegReg(kOpCmov, cc, rl_result.low_reg, temp1_reg);
243
244 FreeTemp(temp1_reg);
245 }
246 } else {
247 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
248 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
249 rl_true = LoadValue(rl_true, kCoreReg);
250 rl_false = LoadValue(rl_false, kCoreReg);
251 rl_result = EvalLoc(rl_dest, kCoreReg, true);
252
253 /*
254 * 1) When true case is already in place:
255 * cmp $0, src_reg
256 * cmovnz result_reg, false_reg
257 * 2) When false case is already in place:
258 * cmp $0, src_reg
259 * cmovz result_reg, true_reg
260 * 3) When neither cases are in place:
261 * cmp $0, src_reg
262 * mov result_reg, true_reg
263 * cmovnz result_reg, false_reg
264 */
265
266 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
267 OpRegImm(kOpCmp, rl_src.low_reg, 0);
268
269 if (rl_result.low_reg == rl_true.low_reg) {
270 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
271 } else if (rl_result.low_reg == rl_false.low_reg) {
272 OpCondRegReg(kOpCmov, kCondEq, rl_result.low_reg, rl_true.low_reg);
273 } else {
274 OpRegCopy(rl_result.low_reg, rl_true.low_reg);
275 OpCondRegReg(kOpCmov, kCondNe, rl_result.low_reg, rl_false.low_reg);
276 }
277 }
278
279 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700280}
281
282void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700283 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700284 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
285 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000286 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800287
288 if (rl_src1.is_const) {
289 std::swap(rl_src1, rl_src2);
290 ccode = FlipComparisonOrder(ccode);
291 }
292 if (rl_src2.is_const) {
293 // Do special compare/branch against simple const operand
294 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
295 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
296 return;
297 }
298
Brian Carlstrom7940e442013-07-12 13:46:57 -0700299 FlushAllRegs();
300 LockCallTemps(); // Prepare for explicit register usage
301 LoadValueDirectWideFixed(rl_src1, r0, r1);
302 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700303 // Swap operands and condition code to prevent use of zero flag.
304 if (ccode == kCondLe || ccode == kCondGt) {
305 // Compute (r3:r2) = (r3:r2) - (r1:r0)
306 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
307 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
308 } else {
309 // Compute (r1:r0) = (r1:r0) - (r3:r2)
310 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
311 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
312 }
313 switch (ccode) {
314 case kCondEq:
315 case kCondNe:
316 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
317 break;
318 case kCondLe:
319 ccode = kCondGe;
320 break;
321 case kCondGt:
322 ccode = kCondLt;
323 break;
324 case kCondLt:
325 case kCondGe:
326 break;
327 default:
328 LOG(FATAL) << "Unexpected ccode: " << ccode;
329 }
330 OpCondBranch(ccode, taken);
331}
332
Mark Mendell412d4f82013-12-18 13:32:36 -0800333void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
334 int64_t val, ConditionCode ccode) {
335 int32_t val_lo = Low32Bits(val);
336 int32_t val_hi = High32Bits(val);
337 LIR* taken = &block_label_list_[bb->taken];
338 LIR* not_taken = &block_label_list_[bb->fall_through];
339 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
340 int32_t low_reg = rl_src1.low_reg;
341 int32_t high_reg = rl_src1.high_reg;
342
343 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
344 int t_reg = AllocTemp();
345 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
346 FreeTemp(t_reg);
347 OpCondBranch(ccode, taken);
348 return;
349 }
350
351 OpRegImm(kOpCmp, high_reg, val_hi);
352 switch (ccode) {
353 case kCondEq:
354 case kCondNe:
355 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
356 break;
357 case kCondLt:
358 OpCondBranch(kCondLt, taken);
359 OpCondBranch(kCondGt, not_taken);
360 ccode = kCondUlt;
361 break;
362 case kCondLe:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondLs;
366 break;
367 case kCondGt:
368 OpCondBranch(kCondGt, taken);
369 OpCondBranch(kCondLt, not_taken);
370 ccode = kCondHi;
371 break;
372 case kCondGe:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondUge;
376 break;
377 default:
378 LOG(FATAL) << "Unexpected ccode: " << ccode;
379 }
380 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
381}
382
Mark Mendell2bf31e62014-01-23 12:13:40 -0800383void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
384 // It does not make sense to calculate magic and shift for zero divisor.
385 DCHECK_NE(divisor, 0);
386
387 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
388 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
389 * The magic number M and shift S can be calculated in the following way:
390 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
391 * where divisor(d) >=2.
392 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
393 * where divisor(d) <= -2.
394 * Thus nc can be calculated like:
395 * nc = 2^31 + 2^31 % d - 1, where d >= 2
396 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
397 *
398 * So the shift p is the smallest p satisfying
399 * 2^p > nc * (d - 2^p % d), where d >= 2
400 * 2^p > nc * (d + 2^p % d), where d <= -2.
401 *
402 * the magic number M is calcuated by
403 * M = (2^p + d - 2^p % d) / d, where d >= 2
404 * M = (2^p - d - 2^p % d) / d, where d <= -2.
405 *
406 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
407 * the shift number S.
408 */
409
410 int32_t p = 31;
411 const uint32_t two31 = 0x80000000U;
412
413 // Initialize the computations.
414 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
415 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
416 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
417 uint32_t quotient1 = two31 / abs_nc;
418 uint32_t remainder1 = two31 % abs_nc;
419 uint32_t quotient2 = two31 / abs_d;
420 uint32_t remainder2 = two31 % abs_d;
421
422 /*
423 * To avoid handling both positive and negative divisor, Hacker's Delight
424 * introduces a method to handle these 2 cases together to avoid duplication.
425 */
426 uint32_t delta;
427 do {
428 p++;
429 quotient1 = 2 * quotient1;
430 remainder1 = 2 * remainder1;
431 if (remainder1 >= abs_nc) {
432 quotient1++;
433 remainder1 = remainder1 - abs_nc;
434 }
435 quotient2 = 2 * quotient2;
436 remainder2 = 2 * remainder2;
437 if (remainder2 >= abs_d) {
438 quotient2++;
439 remainder2 = remainder2 - abs_d;
440 }
441 delta = abs_d - remainder2;
442 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
443
444 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
445 shift = p - 32;
446}
447
Brian Carlstrom7940e442013-07-12 13:46:57 -0700448RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700449 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700450 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
451 return rl_dest;
452}
453
Mark Mendell2bf31e62014-01-23 12:13:40 -0800454RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
455 int imm, bool is_div) {
456 // Use a multiply (and fixup) to perform an int div/rem by a constant.
457
458 // We have to use fixed registers, so flush all the temps.
459 FlushAllRegs();
460 LockCallTemps(); // Prepare for explicit register usage.
461
462 // Assume that the result will be in EDX.
463 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
464 r2, INVALID_REG, INVALID_SREG, INVALID_SREG};
465
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700466 // handle div/rem by 1 special case.
467 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800468 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700469 // x / 1 == x.
470 StoreValue(rl_result, rl_src);
471 } else {
472 // x % 1 == 0.
473 LoadConstantNoClobber(r0, 0);
474 // For this case, return the result in EAX.
475 rl_result.low_reg = r0;
476 }
477 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
478 if (is_div) {
479 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800480 LoadValueDirectFixed(rl_src, r0);
481 OpRegImm(kOpCmp, r0, 0x80000000);
482 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
483
484 // for x != MIN_INT, x / -1 == -x.
485 NewLIR1(kX86Neg32R, r0);
486
487 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
488 // The target for cmp/jmp above.
489 minint_branch->target = NewLIR0(kPseudoTargetLabel);
490 // EAX already contains the right value (0x80000000),
491 branch_around->target = NewLIR0(kPseudoTargetLabel);
492 } else {
493 // x % -1 == 0.
494 LoadConstantNoClobber(r0, 0);
495 }
496 // For this case, return the result in EAX.
497 rl_result.low_reg = r0;
498 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700499 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800500 // Use H.S.Warren's Hacker's Delight Chapter 10 and
501 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
502 int magic, shift;
503 CalculateMagicAndShift(imm, magic, shift);
504
505 /*
506 * For imm >= 2,
507 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
508 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
509 * For imm <= -2,
510 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
511 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
512 * We implement this algorithm in the following way:
513 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
514 * 2. if imm > 0 and magic < 0, add numerator to EDX
515 * if imm < 0 and magic > 0, sub numerator from EDX
516 * 3. if S !=0, SAR S bits for EDX
517 * 4. add 1 to EDX if EDX < 0
518 * 5. Thus, EDX is the quotient
519 */
520
521 // Numerator into EAX.
522 int numerator_reg = -1;
523 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
524 // We will need the value later.
525 if (rl_src.location == kLocPhysReg) {
526 // We can use it directly.
527 DCHECK(rl_src.low_reg != r0 && rl_src.low_reg != r2);
528 numerator_reg = rl_src.low_reg;
529 } else {
530 LoadValueDirectFixed(rl_src, r1);
531 numerator_reg = r1;
532 }
533 OpRegCopy(r0, numerator_reg);
534 } else {
535 // Only need this once. Just put it into EAX.
536 LoadValueDirectFixed(rl_src, r0);
537 }
538
539 // EDX = magic.
540 LoadConstantNoClobber(r2, magic);
541
542 // EDX:EAX = magic & dividend.
543 NewLIR1(kX86Imul32DaR, r2);
544
545 if (imm > 0 && magic < 0) {
546 // Add numerator to EDX.
547 DCHECK_NE(numerator_reg, -1);
548 NewLIR2(kX86Add32RR, r2, numerator_reg);
549 } else if (imm < 0 && magic > 0) {
550 DCHECK_NE(numerator_reg, -1);
551 NewLIR2(kX86Sub32RR, r2, numerator_reg);
552 }
553
554 // Do we need the shift?
555 if (shift != 0) {
556 // Shift EDX by 'shift' bits.
557 NewLIR2(kX86Sar32RI, r2, shift);
558 }
559
560 // Add 1 to EDX if EDX < 0.
561
562 // Move EDX to EAX.
563 OpRegCopy(r0, r2);
564
565 // Move sign bit to bit 0, zeroing the rest.
566 NewLIR2(kX86Shr32RI, r2, 31);
567
568 // EDX = EDX + EAX.
569 NewLIR2(kX86Add32RR, r2, r0);
570
571 // Quotient is in EDX.
572 if (!is_div) {
573 // We need to compute the remainder.
574 // Remainder is divisor - (quotient * imm).
575 DCHECK_NE(numerator_reg, -1);
576 OpRegCopy(r0, numerator_reg);
577
578 // EAX = numerator * imm.
579 OpRegRegImm(kOpMul, r2, r2, imm);
580
581 // EDX -= EAX.
582 NewLIR2(kX86Sub32RR, r0, r2);
583
584 // For this case, return the result in EAX.
585 rl_result.low_reg = r0;
586 }
587 }
588
589 return rl_result;
590}
591
Brian Carlstrom7940e442013-07-12 13:46:57 -0700592RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700593 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700594 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
595 return rl_dest;
596}
597
Mark Mendell2bf31e62014-01-23 12:13:40 -0800598RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
599 RegLocation rl_src2, bool is_div, bool check_zero) {
600 // We have to use fixed registers, so flush all the temps.
601 FlushAllRegs();
602 LockCallTemps(); // Prepare for explicit register usage.
603
604 // Load LHS into EAX.
605 LoadValueDirectFixed(rl_src1, r0);
606
607 // Load RHS into EBX.
608 LoadValueDirectFixed(rl_src2, r1);
609
610 // Copy LHS sign bit into EDX.
611 NewLIR0(kx86Cdq32Da);
612
613 if (check_zero) {
614 // Handle division by zero case.
615 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
616 }
617
618 // Have to catch 0x80000000/-1 case, or we will get an exception!
619 OpRegImm(kOpCmp, r1, -1);
620 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
621
622 // RHS is -1.
623 OpRegImm(kOpCmp, r0, 0x80000000);
624 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
625
626 // In 0x80000000/-1 case.
627 if (!is_div) {
628 // For DIV, EAX is already right. For REM, we need EDX 0.
629 LoadConstantNoClobber(r2, 0);
630 }
631 LIR* done = NewLIR1(kX86Jmp8, 0);
632
633 // Expected case.
634 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
635 minint_branch->target = minus_one_branch->target;
636 NewLIR1(kX86Idivmod32DaR, r1);
637 done->target = NewLIR0(kPseudoTargetLabel);
638
639 // Result is in EAX for div and EDX for rem.
640 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
641 r0, INVALID_REG, INVALID_SREG, INVALID_SREG};
642 if (!is_div) {
643 rl_result.low_reg = r2;
644 }
645 return rl_result;
646}
647
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700648bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700649 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800650
651 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700652 RegLocation rl_src1 = info->args[0];
653 RegLocation rl_src2 = info->args[1];
654 rl_src1 = LoadValue(rl_src1, kCoreReg);
655 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800656
Brian Carlstrom7940e442013-07-12 13:46:57 -0700657 RegLocation rl_dest = InlineTarget(info);
658 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800659
660 /*
661 * If the result register is the same as the second element, then we need to be careful.
662 * The reason is that the first copy will inadvertently clobber the second element with
663 * the first one thus yielding the wrong result. Thus we do a swap in that case.
664 */
665 if (rl_result.low_reg == rl_src2.low_reg) {
666 std::swap(rl_src1, rl_src2);
667 }
668
669 // Pick the first integer as min/max.
670 OpRegCopy(rl_result.low_reg, rl_src1.low_reg);
671
672 // If the integers are both in the same register, then there is nothing else to do
673 // because they are equal and we have already moved one into the result.
674 if (rl_src1.low_reg != rl_src2.low_reg) {
675 // It is possible we didn't pick correctly so do the actual comparison now.
676 OpRegReg(kOpCmp, rl_src1.low_reg, rl_src2.low_reg);
677
678 // Conditionally move the other integer into the destination register.
679 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
680 OpCondRegReg(kOpCmov, condition_code, rl_result.low_reg, rl_src2.low_reg);
681 }
682
Brian Carlstrom7940e442013-07-12 13:46:57 -0700683 StoreValue(rl_dest, rl_result);
684 return true;
685}
686
Vladimir Markoe508a202013-11-04 15:24:22 +0000687bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
688 RegLocation rl_src_address = info->args[0]; // long address
689 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800690 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000691 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
692 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
693 if (size == kLong) {
694 // Unaligned access is allowed on x86.
695 LoadBaseDispWide(rl_address.low_reg, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
696 StoreValueWide(rl_dest, rl_result);
697 } else {
698 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
699 // Unaligned access is allowed on x86.
700 LoadBaseDisp(rl_address.low_reg, 0, rl_result.low_reg, size, INVALID_SREG);
701 StoreValue(rl_dest, rl_result);
702 }
703 return true;
704}
705
706bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
707 RegLocation rl_src_address = info->args[0]; // long address
708 rl_src_address.wide = 0; // ignore high half in info->args[1]
709 RegLocation rl_src_value = info->args[2]; // [size] value
710 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
711 if (size == kLong) {
712 // Unaligned access is allowed on x86.
713 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
714 StoreBaseDispWide(rl_address.low_reg, 0, rl_value.low_reg, rl_value.high_reg);
715 } else {
716 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
717 // Unaligned access is allowed on x86.
718 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
719 StoreBaseDisp(rl_address.low_reg, 0, rl_value.low_reg, size);
720 }
721 return true;
722}
723
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700724void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700725 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
726}
727
Ian Rogers468532e2013-08-05 10:56:33 -0700728void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
729 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700730}
731
Vladimir Marko1c282e22013-11-21 14:49:47 +0000732bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000733 DCHECK_EQ(cu_->instruction_set, kX86);
734 // Unused - RegLocation rl_src_unsafe = info->args[0];
735 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
736 RegLocation rl_src_offset = info->args[2]; // long low
737 rl_src_offset.wide = 0; // ignore high half in info->args[3]
738 RegLocation rl_src_expected = info->args[4]; // int, long or Object
739 // If is_long, high half is in info->args[5]
740 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
741 // If is_long, high half is in info->args[7]
742
743 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000744 FlushAllRegs();
745 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000746 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
747 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000748 NewLIR1(kX86Push32R, rDI);
749 MarkTemp(rDI);
750 LockTemp(rDI);
751 NewLIR1(kX86Push32R, rSI);
752 MarkTemp(rSI);
753 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000754 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
755 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
756 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000757 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
758 FreeTemp(rSI);
759 UnmarkTemp(rSI);
760 NewLIR1(kX86Pop32R, rSI);
761 FreeTemp(rDI);
762 UnmarkTemp(rDI);
763 NewLIR1(kX86Pop32R, rDI);
764 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000765 } else {
766 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
767 FlushReg(r0);
768 LockTemp(r0);
769
770 // Release store semantics, get the barrier out of the way. TODO: revisit
771 GenMemBarrier(kStoreLoad);
772
773 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
774 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
775
776 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
777 // Mark card for object assuming new value is stored.
778 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
779 MarkGCCard(rl_new_value.low_reg, rl_object.low_reg);
780 LockTemp(r0);
781 }
782
783 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
784 LoadValueDirect(rl_src_expected, r0);
785 NewLIR5(kX86LockCmpxchgAR, rl_object.low_reg, rl_offset.low_reg, 0, 0, rl_new_value.low_reg);
786
787 FreeTemp(r0);
788 }
789
790 // Convert ZF to boolean
791 RegLocation rl_dest = InlineTarget(info); // boolean place for result
792 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
793 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondZ);
794 NewLIR2(kX86Movzx8RR, rl_result.low_reg, rl_result.low_reg);
795 StoreValue(rl_dest, rl_result);
796 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700797}
798
799LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800800 CHECK(base_of_code_ != nullptr);
801
802 // Address the start of the method
803 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
804 LoadValueDirectFixed(rl_method, reg);
805 store_method_addr_used_ = true;
806
807 // Load the proper value from the literal area.
808 // We don't know the proper offset for the value, so pick one that will force
809 // 4 byte offset. We will fix this up in the assembler later to have the right
810 // value.
811 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
812 res->target = target;
813 res->flags.fixup = kFixupLoad;
814 SetMemRefType(res, true, kLiteral);
815 store_method_addr_used_ = true;
816 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700817}
818
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700819LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700820 LOG(FATAL) << "Unexpected use of OpVldm for x86";
821 return NULL;
822}
823
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700824LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700825 LOG(FATAL) << "Unexpected use of OpVstm for x86";
826 return NULL;
827}
828
829void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
830 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700831 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700832 int t_reg = AllocTemp();
833 OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, second_bit - first_bit);
834 OpRegRegReg(kOpAdd, rl_result.low_reg, rl_src.low_reg, t_reg);
835 FreeTemp(t_reg);
836 if (first_bit != 0) {
837 OpRegRegImm(kOpLsl, rl_result.low_reg, rl_result.low_reg, first_bit);
838 }
839}
840
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700841void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800842 // We are not supposed to clobber either of the provided registers, so allocate
843 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700844 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800845
846 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700847 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800848
849 // In case of zero, throw ArithmeticException.
850 GenCheck(kCondEq, kThrowDivZero);
851
852 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700853 FreeTemp(t_reg);
854}
855
856// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700857LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700858 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700859 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
860}
861
862// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700863LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700864 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800865 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700866}
867
buzbee11b63d12013-08-27 07:34:17 -0700868bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700869 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700870 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
871 return false;
872}
873
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700874LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700875 LOG(FATAL) << "Unexpected use of OpIT in x86";
876 return NULL;
877}
878
Mark Mendell4708dcd2014-01-22 09:05:18 -0800879void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
880 switch (val) {
881 case 0:
882 NewLIR2(kX86Xor32RR, dest, dest);
883 break;
884 case 1:
885 OpRegCopy(dest, src);
886 break;
887 default:
888 OpRegRegImm(kOpMul, dest, src, val);
889 break;
890 }
891}
892
893void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
894 LIR *m;
895 switch (val) {
896 case 0:
897 NewLIR2(kX86Xor32RR, dest, dest);
898 break;
899 case 1:
900 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
901 break;
902 default:
903 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
904 displacement, val);
905 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
906 break;
907 }
908}
909
Mark Mendelle02d48f2014-01-15 11:19:23 -0800910void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700911 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800912 if (rl_src1.is_const) {
913 std::swap(rl_src1, rl_src2);
914 }
915 // Are we multiplying by a constant?
916 if (rl_src2.is_const) {
917 // Do special compare/branch against simple const operand
918 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
919 if (val == 0) {
920 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
921 OpRegReg(kOpXor, rl_result.low_reg, rl_result.low_reg);
922 OpRegReg(kOpXor, rl_result.high_reg, rl_result.high_reg);
923 StoreValueWide(rl_dest, rl_result);
924 return;
925 } else if (val == 1) {
926 rl_src1 = EvalLocWide(rl_src1, kCoreReg, true);
927 StoreValueWide(rl_dest, rl_src1);
928 return;
929 } else if (val == 2) {
930 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
931 return;
932 } else if (IsPowerOfTwo(val)) {
933 int shift_amount = LowestSetBit(val);
934 if (!BadOverlap(rl_src1, rl_dest)) {
935 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
936 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
937 rl_src1, shift_amount);
938 StoreValueWide(rl_dest, rl_result);
939 return;
940 }
941 }
942
943 // Okay, just bite the bullet and do it.
944 int32_t val_lo = Low32Bits(val);
945 int32_t val_hi = High32Bits(val);
946 FlushAllRegs();
947 LockCallTemps(); // Prepare for explicit register usage.
948 rl_src1 = UpdateLocWide(rl_src1);
949 bool src1_in_reg = rl_src1.location == kLocPhysReg;
950 int displacement = SRegOffset(rl_src1.s_reg_low);
951
952 // ECX <- 1H * 2L
953 // EAX <- 1L * 2H
954 if (src1_in_reg) {
955 GenImulRegImm(r1, rl_src1.high_reg, val_lo);
956 GenImulRegImm(r0, rl_src1.low_reg, val_hi);
957 } else {
958 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
959 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
960 }
961
962 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
963 NewLIR2(kX86Add32RR, r1, r0);
964
965 // EAX <- 2L
966 LoadConstantNoClobber(r0, val_lo);
967
968 // EDX:EAX <- 2L * 1L (double precision)
969 if (src1_in_reg) {
970 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
971 } else {
972 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
973 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
974 true /* is_load */, true /* is_64bit */);
975 }
976
977 // EDX <- EDX + ECX (add high words)
978 NewLIR2(kX86Add32RR, r2, r1);
979
980 // Result is EDX:EAX
981 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
982 INVALID_SREG, INVALID_SREG};
983 StoreValueWide(rl_dest, rl_result);
984 return;
985 }
986
987 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -0800988 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
989 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
990 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
991
Mark Mendell4708dcd2014-01-22 09:05:18 -0800992 FlushAllRegs();
993 LockCallTemps(); // Prepare for explicit register usage.
994 rl_src1 = UpdateLocWide(rl_src1);
995 rl_src2 = UpdateLocWide(rl_src2);
996
997 // At this point, the VRs are in their home locations.
998 bool src1_in_reg = rl_src1.location == kLocPhysReg;
999 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1000
1001 // ECX <- 1H
1002 if (src1_in_reg) {
1003 NewLIR2(kX86Mov32RR, r1, rl_src1.high_reg);
1004 } else {
1005 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1006 kWord, GetSRegHi(rl_src1.s_reg_low));
1007 }
1008
Mark Mendellde99bba2014-02-14 12:15:02 -08001009 if (is_square) {
1010 // Take advantage of the fact that the values are the same.
1011 // ECX <- ECX * 2L (1H * 2L)
1012 if (src2_in_reg) {
1013 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1014 } else {
1015 int displacement = SRegOffset(rl_src2.s_reg_low);
1016 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1017 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1018 true /* is_load */, true /* is_64bit */);
1019 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001020
Mark Mendellde99bba2014-02-14 12:15:02 -08001021 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1022 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001023 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001024 // EAX <- 2H
1025 if (src2_in_reg) {
1026 NewLIR2(kX86Mov32RR, r0, rl_src2.high_reg);
1027 } else {
1028 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1029 kWord, GetSRegHi(rl_src2.s_reg_low));
1030 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001031
Mark Mendellde99bba2014-02-14 12:15:02 -08001032 // EAX <- EAX * 1L (2H * 1L)
1033 if (src1_in_reg) {
1034 NewLIR2(kX86Imul32RR, r0, rl_src1.low_reg);
1035 } else {
1036 int displacement = SRegOffset(rl_src1.s_reg_low);
1037 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1038 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1039 true /* is_load */, true /* is_64bit */);
1040 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001041
Mark Mendellde99bba2014-02-14 12:15:02 -08001042 // ECX <- ECX * 2L (1H * 2L)
1043 if (src2_in_reg) {
1044 NewLIR2(kX86Imul32RR, r1, rl_src2.low_reg);
1045 } else {
1046 int displacement = SRegOffset(rl_src2.s_reg_low);
1047 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1048 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1049 true /* is_load */, true /* is_64bit */);
1050 }
1051
1052 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1053 NewLIR2(kX86Add32RR, r1, r0);
1054 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001055
1056 // EAX <- 2L
1057 if (src2_in_reg) {
1058 NewLIR2(kX86Mov32RR, r0, rl_src2.low_reg);
1059 } else {
1060 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1061 kWord, rl_src2.s_reg_low);
1062 }
1063
1064 // EDX:EAX <- 2L * 1L (double precision)
1065 if (src1_in_reg) {
1066 NewLIR1(kX86Mul32DaR, rl_src1.low_reg);
1067 } else {
1068 int displacement = SRegOffset(rl_src1.s_reg_low);
1069 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1070 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1071 true /* is_load */, true /* is_64bit */);
1072 }
1073
1074 // EDX <- EDX + ECX (add high words)
1075 NewLIR2(kX86Add32RR, r2, r1);
1076
1077 // Result is EDX:EAX
1078 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, r0, r2,
1079 INVALID_SREG, INVALID_SREG};
1080 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001081}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001082
1083void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1084 Instruction::Code op) {
1085 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1086 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1087 if (rl_src.location == kLocPhysReg) {
1088 // Both operands are in registers.
1089 if (rl_dest.low_reg == rl_src.high_reg) {
1090 // The registers are the same, so we would clobber it before the use.
1091 int temp_reg = AllocTemp();
1092 OpRegCopy(temp_reg, rl_dest.low_reg);
1093 rl_src.high_reg = temp_reg;
1094 }
1095 NewLIR2(x86op, rl_dest.low_reg, rl_src.low_reg);
1096
1097 x86op = GetOpcode(op, rl_dest, rl_src, true);
1098 NewLIR2(x86op, rl_dest.high_reg, rl_src.high_reg);
1099 FreeTemp(rl_src.low_reg);
1100 FreeTemp(rl_src.high_reg);
1101 return;
1102 }
1103
1104 // RHS is in memory.
1105 DCHECK((rl_src.location == kLocDalvikFrame) ||
1106 (rl_src.location == kLocCompilerTemp));
1107 int rBase = TargetReg(kSp);
1108 int displacement = SRegOffset(rl_src.s_reg_low);
1109
1110 LIR *lir = NewLIR3(x86op, rl_dest.low_reg, rBase, displacement + LOWORD_OFFSET);
1111 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1112 true /* is_load */, true /* is64bit */);
1113 x86op = GetOpcode(op, rl_dest, rl_src, true);
1114 lir = NewLIR3(x86op, rl_dest.high_reg, rBase, displacement + HIWORD_OFFSET);
1115 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1116 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001117}
1118
Mark Mendelle02d48f2014-01-15 11:19:23 -08001119void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1120 rl_dest = UpdateLocWide(rl_dest);
1121 if (rl_dest.location == kLocPhysReg) {
1122 // Ensure we are in a register pair
1123 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1124
1125 rl_src = UpdateLocWide(rl_src);
1126 GenLongRegOrMemOp(rl_result, rl_src, op);
1127 StoreFinalValueWide(rl_dest, rl_result);
1128 return;
1129 }
1130
1131 // It wasn't in registers, so it better be in memory.
1132 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1133 (rl_dest.location == kLocCompilerTemp));
1134 rl_src = LoadValueWide(rl_src, kCoreReg);
1135
1136 // Operate directly into memory.
1137 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1138 int rBase = TargetReg(kSp);
1139 int displacement = SRegOffset(rl_dest.s_reg_low);
1140
1141 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.low_reg);
1142 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1143 false /* is_load */, true /* is64bit */);
1144 x86op = GetOpcode(op, rl_dest, rl_src, true);
1145 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.high_reg);
1146 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1147 false /* is_load */, true /* is64bit */);
1148 FreeTemp(rl_src.low_reg);
1149 FreeTemp(rl_src.high_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001150}
1151
Mark Mendelle02d48f2014-01-15 11:19:23 -08001152void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1153 RegLocation rl_src2, Instruction::Code op,
1154 bool is_commutative) {
1155 // Is this really a 2 operand operation?
1156 switch (op) {
1157 case Instruction::ADD_LONG_2ADDR:
1158 case Instruction::SUB_LONG_2ADDR:
1159 case Instruction::AND_LONG_2ADDR:
1160 case Instruction::OR_LONG_2ADDR:
1161 case Instruction::XOR_LONG_2ADDR:
1162 GenLongArith(rl_dest, rl_src2, op);
1163 return;
1164 default:
1165 break;
1166 }
1167
1168 if (rl_dest.location == kLocPhysReg) {
1169 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1170
1171 // We are about to clobber the LHS, so it needs to be a temp.
1172 rl_result = ForceTempWide(rl_result);
1173
1174 // Perform the operation using the RHS.
1175 rl_src2 = UpdateLocWide(rl_src2);
1176 GenLongRegOrMemOp(rl_result, rl_src2, op);
1177
1178 // And now record that the result is in the temp.
1179 StoreFinalValueWide(rl_dest, rl_result);
1180 return;
1181 }
1182
1183 // It wasn't in registers, so it better be in memory.
1184 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1185 (rl_dest.location == kLocCompilerTemp));
1186 rl_src1 = UpdateLocWide(rl_src1);
1187 rl_src2 = UpdateLocWide(rl_src2);
1188
1189 // Get one of the source operands into temporary register.
1190 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1191 if (IsTemp(rl_src1.low_reg) && IsTemp(rl_src1.high_reg)) {
1192 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1193 } else if (is_commutative) {
1194 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1195 // We need at least one of them to be a temporary.
1196 if (!(IsTemp(rl_src2.low_reg) && IsTemp(rl_src2.high_reg))) {
1197 rl_src1 = ForceTempWide(rl_src1);
1198 }
1199 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1200 } else {
1201 // Need LHS to be the temp.
1202 rl_src1 = ForceTempWide(rl_src1);
1203 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1204 }
1205
1206 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001207}
1208
Mark Mendelle02d48f2014-01-15 11:19:23 -08001209void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001210 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001211 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1212}
1213
1214void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1215 RegLocation rl_src1, RegLocation rl_src2) {
1216 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1217}
1218
1219void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1220 RegLocation rl_src1, RegLocation rl_src2) {
1221 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1222}
1223
1224void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1225 RegLocation rl_src1, RegLocation rl_src2) {
1226 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1227}
1228
1229void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1230 RegLocation rl_src1, RegLocation rl_src2) {
1231 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001232}
1233
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001234void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001235 rl_src = LoadValueWide(rl_src, kCoreReg);
1236 RegLocation rl_result = ForceTempWide(rl_src);
1237 if (rl_dest.low_reg == rl_src.high_reg) {
1238 // The registers are the same, so we would clobber it before the use.
1239 int temp_reg = AllocTemp();
1240 OpRegCopy(temp_reg, rl_result.low_reg);
1241 rl_result.high_reg = temp_reg;
1242 }
1243 OpRegReg(kOpNeg, rl_result.low_reg, rl_result.low_reg); // rLow = -rLow
1244 OpRegImm(kOpAdc, rl_result.high_reg, 0); // rHigh = rHigh + CF
1245 OpRegReg(kOpNeg, rl_result.high_reg, rl_result.high_reg); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001246 StoreValueWide(rl_dest, rl_result);
1247}
1248
Ian Rogers468532e2013-08-05 10:56:33 -07001249void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001250 X86OpCode opcode = kX86Bkpt;
1251 switch (op) {
1252 case kOpCmp: opcode = kX86Cmp32RT; break;
1253 case kOpMov: opcode = kX86Mov32RT; break;
1254 default:
1255 LOG(FATAL) << "Bad opcode: " << op;
1256 break;
1257 }
Ian Rogers468532e2013-08-05 10:56:33 -07001258 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001259}
1260
1261/*
1262 * Generate array load
1263 */
1264void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001265 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001266 RegisterClass reg_class = oat_reg_class_by_size(size);
1267 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001268 RegLocation rl_result;
1269 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001270
Mark Mendell343adb52013-12-18 06:02:17 -08001271 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001272 if (size == kLong || size == kDouble) {
1273 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1274 } else {
1275 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1276 }
1277
Mark Mendell343adb52013-12-18 06:02:17 -08001278 bool constant_index = rl_index.is_const;
1279 int32_t constant_index_value = 0;
1280 if (!constant_index) {
1281 rl_index = LoadValue(rl_index, kCoreReg);
1282 } else {
1283 constant_index_value = mir_graph_->ConstantValue(rl_index);
1284 // If index is constant, just fold it into the data offset
1285 data_offset += constant_index_value << scale;
1286 // treat as non array below
1287 rl_index.low_reg = INVALID_REG;
1288 }
1289
Brian Carlstrom7940e442013-07-12 13:46:57 -07001290 /* null object? */
1291 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1292
1293 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001294 if (constant_index) {
1295 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1296 constant_index_value, kThrowConstantArrayBounds);
1297 } else {
1298 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1299 len_offset, kThrowArrayBounds);
1300 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001301 }
Mark Mendell343adb52013-12-18 06:02:17 -08001302 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001303 if ((size == kLong) || (size == kDouble)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001304 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_result.low_reg,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001305 rl_result.high_reg, size, INVALID_SREG);
1306 StoreValueWide(rl_dest, rl_result);
1307 } else {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001308 LoadBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale,
1309 data_offset, rl_result.low_reg, INVALID_REG, size,
1310 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001311 StoreValue(rl_dest, rl_result);
1312 }
1313}
1314
1315/*
1316 * Generate array store
1317 *
1318 */
1319void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001320 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001321 RegisterClass reg_class = oat_reg_class_by_size(size);
1322 int len_offset = mirror::Array::LengthOffset().Int32Value();
1323 int data_offset;
1324
1325 if (size == kLong || size == kDouble) {
1326 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1327 } else {
1328 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1329 }
1330
1331 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001332 bool constant_index = rl_index.is_const;
1333 int32_t constant_index_value = 0;
1334 if (!constant_index) {
1335 rl_index = LoadValue(rl_index, kCoreReg);
1336 } else {
1337 // If index is constant, just fold it into the data offset
1338 constant_index_value = mir_graph_->ConstantValue(rl_index);
1339 data_offset += constant_index_value << scale;
1340 // treat as non array below
1341 rl_index.low_reg = INVALID_REG;
1342 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001343
1344 /* null object? */
1345 GenNullCheck(rl_array.s_reg_low, rl_array.low_reg, opt_flags);
1346
1347 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001348 if (constant_index) {
1349 GenMemImmedCheck(kCondLs, rl_array.low_reg, len_offset,
1350 constant_index_value, kThrowConstantArrayBounds);
1351 } else {
1352 GenRegMemCheck(kCondUge, rl_index.low_reg, rl_array.low_reg,
1353 len_offset, kThrowArrayBounds);
1354 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001355 }
1356 if ((size == kLong) || (size == kDouble)) {
1357 rl_src = LoadValueWide(rl_src, reg_class);
1358 } else {
1359 rl_src = LoadValue(rl_src, reg_class);
1360 }
1361 // If the src reg can't be byte accessed, move it to a temp first.
1362 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.low_reg >= 4) {
1363 int temp = AllocTemp();
1364 OpRegCopy(temp, rl_src.low_reg);
1365 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, temp,
1366 INVALID_REG, size, INVALID_SREG);
1367 } else {
1368 StoreBaseIndexedDisp(rl_array.low_reg, rl_index.low_reg, scale, data_offset, rl_src.low_reg,
1369 rl_src.high_reg, size, INVALID_SREG);
1370 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001371 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001372 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001373 if (!constant_index) {
1374 FreeTemp(rl_index.low_reg);
1375 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001376 MarkGCCard(rl_src.low_reg, rl_array.low_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001377 }
1378}
1379
Mark Mendell4708dcd2014-01-22 09:05:18 -08001380RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1381 RegLocation rl_src, int shift_amount) {
1382 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1383 switch (opcode) {
1384 case Instruction::SHL_LONG:
1385 case Instruction::SHL_LONG_2ADDR:
1386 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1387 if (shift_amount == 32) {
1388 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1389 LoadConstant(rl_result.low_reg, 0);
1390 } else if (shift_amount > 31) {
1391 OpRegCopy(rl_result.high_reg, rl_src.low_reg);
1392 FreeTemp(rl_src.high_reg);
1393 NewLIR2(kX86Sal32RI, rl_result.high_reg, shift_amount - 32);
1394 LoadConstant(rl_result.low_reg, 0);
1395 } else {
1396 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1397 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1398 NewLIR3(kX86Shld32RRI, rl_result.high_reg, rl_result.low_reg, shift_amount);
1399 NewLIR2(kX86Sal32RI, rl_result.low_reg, shift_amount);
1400 }
1401 break;
1402 case Instruction::SHR_LONG:
1403 case Instruction::SHR_LONG_2ADDR:
1404 if (shift_amount == 32) {
1405 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1406 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1407 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1408 } else if (shift_amount > 31) {
1409 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1410 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1411 NewLIR2(kX86Sar32RI, rl_result.low_reg, shift_amount - 32);
1412 NewLIR2(kX86Sar32RI, rl_result.high_reg, 31);
1413 } else {
1414 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1415 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1416 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1417 NewLIR2(kX86Sar32RI, rl_result.high_reg, shift_amount);
1418 }
1419 break;
1420 case Instruction::USHR_LONG:
1421 case Instruction::USHR_LONG_2ADDR:
1422 if (shift_amount == 32) {
1423 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1424 LoadConstant(rl_result.high_reg, 0);
1425 } else if (shift_amount > 31) {
1426 OpRegCopy(rl_result.low_reg, rl_src.high_reg);
1427 NewLIR2(kX86Shr32RI, rl_result.low_reg, shift_amount - 32);
1428 LoadConstant(rl_result.high_reg, 0);
1429 } else {
1430 OpRegCopy(rl_result.low_reg, rl_src.low_reg);
1431 OpRegCopy(rl_result.high_reg, rl_src.high_reg);
1432 NewLIR3(kX86Shrd32RRI, rl_result.low_reg, rl_result.high_reg, shift_amount);
1433 NewLIR2(kX86Shr32RI, rl_result.high_reg, shift_amount);
1434 }
1435 break;
1436 default:
1437 LOG(FATAL) << "Unexpected case";
1438 }
1439 return rl_result;
1440}
1441
Brian Carlstrom7940e442013-07-12 13:46:57 -07001442void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001443 RegLocation rl_src, RegLocation rl_shift) {
1444 // Per spec, we only care about low 6 bits of shift amount.
1445 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1446 if (shift_amount == 0) {
1447 rl_src = LoadValueWide(rl_src, kCoreReg);
1448 StoreValueWide(rl_dest, rl_src);
1449 return;
1450 } else if (shift_amount == 1 &&
1451 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1452 // Need to handle this here to avoid calling StoreValueWide twice.
1453 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1454 return;
1455 }
1456 if (BadOverlap(rl_src, rl_dest)) {
1457 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1458 return;
1459 }
1460 rl_src = LoadValueWide(rl_src, kCoreReg);
1461 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1462 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001463}
1464
1465void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001466 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001467 switch (opcode) {
1468 case Instruction::ADD_LONG:
1469 case Instruction::AND_LONG:
1470 case Instruction::OR_LONG:
1471 case Instruction::XOR_LONG:
1472 if (rl_src2.is_const) {
1473 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1474 } else {
1475 DCHECK(rl_src1.is_const);
1476 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1477 }
1478 break;
1479 case Instruction::SUB_LONG:
1480 case Instruction::SUB_LONG_2ADDR:
1481 if (rl_src2.is_const) {
1482 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1483 } else {
1484 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1485 }
1486 break;
1487 case Instruction::ADD_LONG_2ADDR:
1488 case Instruction::OR_LONG_2ADDR:
1489 case Instruction::XOR_LONG_2ADDR:
1490 case Instruction::AND_LONG_2ADDR:
1491 if (rl_src2.is_const) {
1492 GenLongImm(rl_dest, rl_src2, opcode);
1493 } else {
1494 DCHECK(rl_src1.is_const);
1495 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1496 }
1497 break;
1498 default:
1499 // Default - bail to non-const handler.
1500 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1501 break;
1502 }
1503}
1504
1505bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1506 switch (op) {
1507 case Instruction::AND_LONG_2ADDR:
1508 case Instruction::AND_LONG:
1509 return value == -1;
1510 case Instruction::OR_LONG:
1511 case Instruction::OR_LONG_2ADDR:
1512 case Instruction::XOR_LONG:
1513 case Instruction::XOR_LONG_2ADDR:
1514 return value == 0;
1515 default:
1516 return false;
1517 }
1518}
1519
1520X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1521 bool is_high_op) {
1522 bool rhs_in_mem = rhs.location != kLocPhysReg;
1523 bool dest_in_mem = dest.location != kLocPhysReg;
1524 DCHECK(!rhs_in_mem || !dest_in_mem);
1525 switch (op) {
1526 case Instruction::ADD_LONG:
1527 case Instruction::ADD_LONG_2ADDR:
1528 if (dest_in_mem) {
1529 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1530 } else if (rhs_in_mem) {
1531 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1532 }
1533 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1534 case Instruction::SUB_LONG:
1535 case Instruction::SUB_LONG_2ADDR:
1536 if (dest_in_mem) {
1537 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1538 } else if (rhs_in_mem) {
1539 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1540 }
1541 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1542 case Instruction::AND_LONG_2ADDR:
1543 case Instruction::AND_LONG:
1544 if (dest_in_mem) {
1545 return kX86And32MR;
1546 }
1547 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1548 case Instruction::OR_LONG:
1549 case Instruction::OR_LONG_2ADDR:
1550 if (dest_in_mem) {
1551 return kX86Or32MR;
1552 }
1553 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1554 case Instruction::XOR_LONG:
1555 case Instruction::XOR_LONG_2ADDR:
1556 if (dest_in_mem) {
1557 return kX86Xor32MR;
1558 }
1559 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1560 default:
1561 LOG(FATAL) << "Unexpected opcode: " << op;
1562 return kX86Add32RR;
1563 }
1564}
1565
1566X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1567 int32_t value) {
1568 bool in_mem = loc.location != kLocPhysReg;
1569 bool byte_imm = IS_SIMM8(value);
1570 DCHECK(in_mem || !IsFpReg(loc.low_reg));
1571 switch (op) {
1572 case Instruction::ADD_LONG:
1573 case Instruction::ADD_LONG_2ADDR:
1574 if (byte_imm) {
1575 if (in_mem) {
1576 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1577 }
1578 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1579 }
1580 if (in_mem) {
1581 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1582 }
1583 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1584 case Instruction::SUB_LONG:
1585 case Instruction::SUB_LONG_2ADDR:
1586 if (byte_imm) {
1587 if (in_mem) {
1588 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1589 }
1590 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1591 }
1592 if (in_mem) {
1593 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1594 }
1595 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1596 case Instruction::AND_LONG_2ADDR:
1597 case Instruction::AND_LONG:
1598 if (byte_imm) {
1599 return in_mem ? kX86And32MI8 : kX86And32RI8;
1600 }
1601 return in_mem ? kX86And32MI : kX86And32RI;
1602 case Instruction::OR_LONG:
1603 case Instruction::OR_LONG_2ADDR:
1604 if (byte_imm) {
1605 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1606 }
1607 return in_mem ? kX86Or32MI : kX86Or32RI;
1608 case Instruction::XOR_LONG:
1609 case Instruction::XOR_LONG_2ADDR:
1610 if (byte_imm) {
1611 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1612 }
1613 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1614 default:
1615 LOG(FATAL) << "Unexpected opcode: " << op;
1616 return kX86Add32MI;
1617 }
1618}
1619
1620void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1621 DCHECK(rl_src.is_const);
1622 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1623 int32_t val_lo = Low32Bits(val);
1624 int32_t val_hi = High32Bits(val);
1625 rl_dest = UpdateLocWide(rl_dest);
1626
1627 // Can we just do this into memory?
1628 if ((rl_dest.location == kLocDalvikFrame) ||
1629 (rl_dest.location == kLocCompilerTemp)) {
1630 int rBase = TargetReg(kSp);
1631 int displacement = SRegOffset(rl_dest.s_reg_low);
1632
1633 if (!IsNoOp(op, val_lo)) {
1634 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1635 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1636 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1637 false /* is_load */, true /* is64bit */);
1638 }
1639 if (!IsNoOp(op, val_hi)) {
1640 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1641 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1642 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1643 false /* is_load */, true /* is64bit */);
1644 }
1645 return;
1646 }
1647
1648 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1649 DCHECK_EQ(rl_result.location, kLocPhysReg);
1650 DCHECK(!IsFpReg(rl_result.low_reg));
1651
1652 if (!IsNoOp(op, val_lo)) {
1653 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1654 NewLIR2(x86op, rl_result.low_reg, val_lo);
1655 }
1656 if (!IsNoOp(op, val_hi)) {
1657 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1658 NewLIR2(x86op, rl_result.high_reg, val_hi);
1659 }
1660 StoreValueWide(rl_dest, rl_result);
1661}
1662
1663void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1664 RegLocation rl_src2, Instruction::Code op) {
1665 DCHECK(rl_src2.is_const);
1666 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1667 int32_t val_lo = Low32Bits(val);
1668 int32_t val_hi = High32Bits(val);
1669 rl_dest = UpdateLocWide(rl_dest);
1670 rl_src1 = UpdateLocWide(rl_src1);
1671
1672 // Can we do this directly into the destination registers?
1673 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
1674 rl_dest.low_reg == rl_src1.low_reg && rl_dest.high_reg == rl_src1.high_reg &&
1675 !IsFpReg(rl_dest.low_reg)) {
1676 if (!IsNoOp(op, val_lo)) {
1677 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1678 NewLIR2(x86op, rl_dest.low_reg, val_lo);
1679 }
1680 if (!IsNoOp(op, val_hi)) {
1681 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1682 NewLIR2(x86op, rl_dest.high_reg, val_hi);
1683 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001684
1685 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001686 return;
1687 }
1688
1689 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1690 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1691
1692 // We need the values to be in a temporary
1693 RegLocation rl_result = ForceTempWide(rl_src1);
1694 if (!IsNoOp(op, val_lo)) {
1695 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
1696 NewLIR2(x86op, rl_result.low_reg, val_lo);
1697 }
1698 if (!IsNoOp(op, val_hi)) {
1699 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
1700 NewLIR2(x86op, rl_result.high_reg, val_hi);
1701 }
1702
1703 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001704}
1705
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001706// For final classes there are no sub-classes to check and so we can answer the instance-of
1707// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1708void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1709 RegLocation rl_dest, RegLocation rl_src) {
1710 RegLocation object = LoadValue(rl_src, kCoreReg);
1711 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1712 int result_reg = rl_result.low_reg;
1713
1714 // SETcc only works with EAX..EDX.
1715 if (result_reg == object.low_reg || result_reg >= 4) {
1716 result_reg = AllocTypedTemp(false, kCoreReg);
1717 DCHECK_LT(result_reg, 4);
1718 }
1719
1720 // Assume that there is no match.
1721 LoadConstant(result_reg, 0);
1722 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
1723
1724 int check_class = AllocTypedTemp(false, kCoreReg);
1725
1726 // If Method* is already in a register, we can save a copy.
1727 RegLocation rl_method = mir_graph_->GetMethodLoc();
1728 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1729 (sizeof(mirror::Class*) * type_idx);
1730
1731 if (rl_method.location == kLocPhysReg) {
1732 if (use_declaring_class) {
1733 LoadWordDisp(rl_method.low_reg,
1734 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1735 check_class);
1736 } else {
1737 LoadWordDisp(rl_method.low_reg,
1738 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1739 check_class);
1740 LoadWordDisp(check_class, offset_of_type, check_class);
1741 }
1742 } else {
1743 LoadCurrMethodDirect(check_class);
1744 if (use_declaring_class) {
1745 LoadWordDisp(check_class,
1746 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1747 check_class);
1748 } else {
1749 LoadWordDisp(check_class,
1750 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1751 check_class);
1752 LoadWordDisp(check_class, offset_of_type, check_class);
1753 }
1754 }
1755
1756 // Compare the computed class to the class in the object.
1757 DCHECK_EQ(object.location, kLocPhysReg);
1758 OpRegMem(kOpCmp, check_class, object.low_reg,
1759 mirror::Object::ClassOffset().Int32Value());
1760
1761 // Set the low byte of the result to 0 or 1 from the compare condition code.
1762 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1763
1764 LIR* target = NewLIR0(kPseudoTargetLabel);
1765 null_branchover->target = target;
1766 FreeTemp(check_class);
1767 if (IsTemp(result_reg)) {
1768 OpRegCopy(rl_result.low_reg, result_reg);
1769 FreeTemp(result_reg);
1770 }
1771 StoreValue(rl_dest, rl_result);
1772}
1773
Mark Mendell6607d972014-02-10 06:54:18 -08001774void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1775 bool type_known_abstract, bool use_declaring_class,
1776 bool can_assume_type_is_in_dex_cache,
1777 uint32_t type_idx, RegLocation rl_dest,
1778 RegLocation rl_src) {
1779 FlushAllRegs();
1780 // May generate a call - use explicit registers.
1781 LockCallTemps();
1782 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1783 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1784 // Reference must end up in kArg0.
1785 if (needs_access_check) {
1786 // Check we have access to type_idx and if not throw IllegalAccessError,
1787 // Caller function returns Class* in kArg0.
1788 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1789 type_idx, true);
1790 OpRegCopy(class_reg, TargetReg(kRet0));
1791 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1792 } else if (use_declaring_class) {
1793 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1794 LoadWordDisp(TargetReg(kArg1),
1795 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1796 } else {
1797 // Load dex cache entry into class_reg (kArg2).
1798 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1799 LoadWordDisp(TargetReg(kArg1),
1800 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1801 int32_t offset_of_type =
1802 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1803 * type_idx);
1804 LoadWordDisp(class_reg, offset_of_type, class_reg);
1805 if (!can_assume_type_is_in_dex_cache) {
1806 // Need to test presence of type in dex cache at runtime.
1807 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1808 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1809 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1810 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1811 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1812 // Rejoin code paths
1813 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1814 hop_branch->target = hop_target;
1815 }
1816 }
1817 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1818 RegLocation rl_result = GetReturn(false);
1819
1820 // SETcc only works with EAX..EDX.
1821 DCHECK_LT(rl_result.low_reg, 4);
1822
1823 // Is the class NULL?
1824 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1825
1826 /* Load object->klass_. */
1827 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1828 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1829 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1830 LIR* branchover = nullptr;
1831 if (type_known_final) {
1832 // Ensure top 3 bytes of result are 0.
1833 LoadConstant(rl_result.low_reg, 0);
1834 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1835 // Set the low byte of the result to 0 or 1 from the compare condition code.
1836 NewLIR2(kX86Set8R, rl_result.low_reg, kX86CondEq);
1837 } else {
1838 if (!type_known_abstract) {
1839 LoadConstant(rl_result.low_reg, 1); // Assume result succeeds.
1840 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1841 }
1842 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1843 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1844 }
1845 // TODO: only clobber when type isn't final?
1846 ClobberCallerSave();
1847 /* Branch targets here. */
1848 LIR* target = NewLIR0(kPseudoTargetLabel);
1849 StoreValue(rl_dest, rl_result);
1850 branch1->target = target;
1851 if (branchover != nullptr) {
1852 branchover->target = target;
1853 }
1854}
1855
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001856void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1857 RegLocation rl_lhs, RegLocation rl_rhs) {
1858 OpKind op = kOpBkpt;
1859 bool is_div_rem = false;
1860 bool unary = false;
1861 bool shift_op = false;
1862 bool is_two_addr = false;
1863 RegLocation rl_result;
1864 switch (opcode) {
1865 case Instruction::NEG_INT:
1866 op = kOpNeg;
1867 unary = true;
1868 break;
1869 case Instruction::NOT_INT:
1870 op = kOpMvn;
1871 unary = true;
1872 break;
1873 case Instruction::ADD_INT_2ADDR:
1874 is_two_addr = true;
1875 // Fallthrough
1876 case Instruction::ADD_INT:
1877 op = kOpAdd;
1878 break;
1879 case Instruction::SUB_INT_2ADDR:
1880 is_two_addr = true;
1881 // Fallthrough
1882 case Instruction::SUB_INT:
1883 op = kOpSub;
1884 break;
1885 case Instruction::MUL_INT_2ADDR:
1886 is_two_addr = true;
1887 // Fallthrough
1888 case Instruction::MUL_INT:
1889 op = kOpMul;
1890 break;
1891 case Instruction::DIV_INT_2ADDR:
1892 is_two_addr = true;
1893 // Fallthrough
1894 case Instruction::DIV_INT:
1895 op = kOpDiv;
1896 is_div_rem = true;
1897 break;
1898 /* NOTE: returns in kArg1 */
1899 case Instruction::REM_INT_2ADDR:
1900 is_two_addr = true;
1901 // Fallthrough
1902 case Instruction::REM_INT:
1903 op = kOpRem;
1904 is_div_rem = true;
1905 break;
1906 case Instruction::AND_INT_2ADDR:
1907 is_two_addr = true;
1908 // Fallthrough
1909 case Instruction::AND_INT:
1910 op = kOpAnd;
1911 break;
1912 case Instruction::OR_INT_2ADDR:
1913 is_two_addr = true;
1914 // Fallthrough
1915 case Instruction::OR_INT:
1916 op = kOpOr;
1917 break;
1918 case Instruction::XOR_INT_2ADDR:
1919 is_two_addr = true;
1920 // Fallthrough
1921 case Instruction::XOR_INT:
1922 op = kOpXor;
1923 break;
1924 case Instruction::SHL_INT_2ADDR:
1925 is_two_addr = true;
1926 // Fallthrough
1927 case Instruction::SHL_INT:
1928 shift_op = true;
1929 op = kOpLsl;
1930 break;
1931 case Instruction::SHR_INT_2ADDR:
1932 is_two_addr = true;
1933 // Fallthrough
1934 case Instruction::SHR_INT:
1935 shift_op = true;
1936 op = kOpAsr;
1937 break;
1938 case Instruction::USHR_INT_2ADDR:
1939 is_two_addr = true;
1940 // Fallthrough
1941 case Instruction::USHR_INT:
1942 shift_op = true;
1943 op = kOpLsr;
1944 break;
1945 default:
1946 LOG(FATAL) << "Invalid word arith op: " << opcode;
1947 }
1948
1949 // Can we convert to a two address instruction?
1950 if (!is_two_addr &&
1951 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1952 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1953 is_two_addr = true;
1954 }
1955
1956 // Get the div/rem stuff out of the way.
1957 if (is_div_rem) {
1958 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1959 StoreValue(rl_dest, rl_result);
1960 return;
1961 }
1962
1963 if (unary) {
1964 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1965 rl_result = UpdateLoc(rl_dest);
1966 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1967 OpRegReg(op, rl_result.low_reg, rl_lhs.low_reg);
1968 } else {
1969 if (shift_op) {
1970 // X86 doesn't require masking and must use ECX.
1971 int t_reg = TargetReg(kCount); // rCX
1972 LoadValueDirectFixed(rl_rhs, t_reg);
1973 if (is_two_addr) {
1974 // Can we do this directly into memory?
1975 rl_result = UpdateLoc(rl_dest);
1976 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1977 if (rl_result.location != kLocPhysReg) {
1978 // Okay, we can do this into memory
1979 OpMemReg(op, rl_result, t_reg);
1980 FreeTemp(t_reg);
1981 return;
1982 } else if (!IsFpReg(rl_result.low_reg)) {
1983 // Can do this directly into the result register
1984 OpRegReg(op, rl_result.low_reg, t_reg);
1985 FreeTemp(t_reg);
1986 StoreFinalValue(rl_dest, rl_result);
1987 return;
1988 }
1989 }
1990 // Three address form, or we can't do directly.
1991 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1992 rl_result = EvalLoc(rl_dest, kCoreReg, true);
1993 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, t_reg);
1994 FreeTemp(t_reg);
1995 } else {
1996 // Multiply is 3 operand only (sort of).
1997 if (is_two_addr && op != kOpMul) {
1998 // Can we do this directly into memory?
1999 rl_result = UpdateLoc(rl_dest);
2000 if (rl_result.location == kLocPhysReg) {
2001 // Can we do this from memory directly?
2002 rl_rhs = UpdateLoc(rl_rhs);
2003 if (rl_rhs.location != kLocPhysReg) {
2004 OpRegMem(op, rl_result.low_reg, rl_rhs);
2005 StoreFinalValue(rl_dest, rl_result);
2006 return;
2007 } else if (!IsFpReg(rl_rhs.low_reg)) {
2008 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
2009 StoreFinalValue(rl_dest, rl_result);
2010 return;
2011 }
2012 }
2013 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2014 if (rl_result.location != kLocPhysReg) {
2015 // Okay, we can do this into memory.
2016 OpMemReg(op, rl_result, rl_rhs.low_reg);
2017 return;
2018 } else if (!IsFpReg(rl_result.low_reg)) {
2019 // Can do this directly into the result register.
2020 OpRegReg(op, rl_result.low_reg, rl_rhs.low_reg);
2021 StoreFinalValue(rl_dest, rl_result);
2022 return;
2023 } else {
2024 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2025 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2026 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2027 }
2028 } else {
2029 // Try to use reg/memory instructions.
2030 rl_lhs = UpdateLoc(rl_lhs);
2031 rl_rhs = UpdateLoc(rl_rhs);
2032 // We can't optimize with FP registers.
2033 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2034 // Something is difficult, so fall back to the standard case.
2035 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2036 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2037 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2038 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2039 } else {
2040 // We can optimize by moving to result and using memory operands.
2041 if (rl_rhs.location != kLocPhysReg) {
2042 // Force LHS into result.
2043 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2044 LoadValueDirect(rl_lhs, rl_result.low_reg);
2045 OpRegMem(op, rl_result.low_reg, rl_rhs);
2046 } else if (rl_lhs.location != kLocPhysReg) {
2047 // RHS is in a register; LHS is in memory.
2048 if (op != kOpSub) {
2049 // Force RHS into result and operate on memory.
2050 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2051 OpRegCopy(rl_result.low_reg, rl_rhs.low_reg);
2052 OpRegMem(op, rl_result.low_reg, rl_lhs);
2053 } else {
2054 // Subtraction isn't commutative.
2055 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2056 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2057 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2058 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2059 }
2060 } else {
2061 // Both are in registers.
2062 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2063 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2064 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2065 OpRegRegReg(op, rl_result.low_reg, rl_lhs.low_reg, rl_rhs.low_reg);
2066 }
2067 }
2068 }
2069 }
2070 }
2071 StoreValue(rl_dest, rl_result);
2072}
2073
2074bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2075 // If we have non-core registers, then we can't do good things.
2076 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.low_reg)) {
2077 return false;
2078 }
2079 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.low_reg)) {
2080 return false;
2081 }
2082
2083 // Everything will be fine :-).
2084 return true;
2085}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002086} // namespace art