blob: 5e1c4d1e9f9c1ebaaa8923905c82725bf02a1fe7 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
214
215 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
216 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
217 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
218 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
219 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
220 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
221 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
222 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
223 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
224 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
225
226#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
227 reg, reg_kind, reg_flags, \
228 mem, mem_kind, mem_flags, \
229 arr, arr_kind, arr_flags, imm, \
230 b_flags, hw_flags, w_flags, \
231 b_format, hw_format, w_format) \
232{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
233{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
234{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
235{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
236{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
237{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
238{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
239{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
240{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
241
242 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
243 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
244
Mark Mendell2bf31e62014-01-23 12:13:40 -0800245 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
246 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
247 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
248 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700249#undef UNARY_ENCODING_MAP
250
Mark Mendell2bf31e62014-01-23 12:13:40 -0800251 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000252 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
253 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
254 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100255
Brian Carlstrom7940e442013-07-12 13:46:57 -0700256#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
257{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
258{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
259{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
260
261 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
262 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
263 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
264
265 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
266 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
267 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
268
269 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
270 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
271 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
276 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
277 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
279 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
291
292 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
293 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800294 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000295 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296
297 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
298 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
299 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
300 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
301
302 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
303 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
304 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
305
306 // TODO: load/store?
307 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
308 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
309
310 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
311 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
312
313 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
314 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
315 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700316 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
317 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000318 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
319 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700320
321 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
322 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
323 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
324 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
325#undef EXT_0F_ENCODING_MAP
326
327 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
328 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
329 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
330 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
331 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
332 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
333 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
334 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
335 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700336 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700337
338 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
339 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
340 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
341};
342
343static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
344 size_t size = 0;
345 if (entry->skeleton.prefix1 > 0) {
346 ++size;
347 if (entry->skeleton.prefix2 > 0) {
348 ++size;
349 }
350 }
351 ++size; // opcode
352 if (entry->skeleton.opcode == 0x0F) {
353 ++size;
354 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
355 ++size;
356 }
357 }
358 ++size; // modrm
359 if (has_sib || base == rX86_SP) {
360 // SP requires a SIB byte.
361 ++size;
362 }
363 if (displacement != 0 || base == rBP) {
364 // BP requires an explicit displacement, even when it's 0.
365 if (entry->opcode != kX86Lea32RA) {
366 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
367 }
368 size += IS_SIMM8(displacement) ? 1 : 4;
369 }
370 size += entry->skeleton.immediate_bytes;
371 return size;
372}
373
374int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700375 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700376 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
377 switch (entry->kind) {
378 case kData:
379 return 4; // 4 bytes of data
380 case kNop:
381 return lir->operands[0]; // length of nop is sole operand
382 case kNullary:
383 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100384 case kRegOpcode: // lir operands - 0: reg
385 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700386 case kReg: // lir operands - 0: reg
387 return ComputeSize(entry, 0, 0, false);
388 case kMem: // lir operands - 0: base, 1: disp
389 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
390 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
391 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
392 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
393 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
394 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
395 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
396 case kThreadReg: // lir operands - 0: disp, 1: reg
397 return ComputeSize(entry, 0, lir->operands[0], false);
398 case kRegReg:
399 return ComputeSize(entry, 0, 0, false);
400 case kRegRegStore:
401 return ComputeSize(entry, 0, 0, false);
402 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
403 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
404 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
405 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
406 case kRegThread: // lir operands - 0: reg, 1: disp
407 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
408 case kRegImm: { // lir operands - 0: reg, 1: immediate
409 size_t size = ComputeSize(entry, 0, 0, false);
410 if (entry->skeleton.ax_opcode == 0) {
411 return size;
412 } else {
413 // AX opcodes don't require the modrm byte.
414 int reg = lir->operands[0];
415 return size - (reg == rAX ? 1 : 0);
416 }
417 }
418 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
419 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
420 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
421 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
422 case kThreadImm: // lir operands - 0: disp, 1: imm
423 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
424 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
425 return ComputeSize(entry, 0, 0, false);
426 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
427 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
428 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
429 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
430 case kMovRegImm: // lir operands - 0: reg, 1: immediate
431 return 1 + entry->skeleton.immediate_bytes;
432 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
433 // Shift by immediate one has a shorter opcode.
434 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
435 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
436 // Shift by immediate one has a shorter opcode.
437 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
438 (lir->operands[2] == 1 ? 1 : 0);
439 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
440 // Shift by immediate one has a shorter opcode.
441 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
442 (lir->operands[4] == 1 ? 1 : 0);
443 case kShiftRegCl:
444 return ComputeSize(entry, 0, 0, false);
445 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
446 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
447 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
448 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
449 case kRegCond: // lir operands - 0: reg, 1: cond
450 return ComputeSize(entry, 0, 0, false);
451 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
452 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
453 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
454 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800455 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
456 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700457 case kJcc:
458 if (lir->opcode == kX86Jcc8) {
459 return 2; // opcode + rel8
460 } else {
461 DCHECK(lir->opcode == kX86Jcc32);
462 return 6; // 2 byte opcode + rel32
463 }
464 case kJmp:
465 if (lir->opcode == kX86Jmp8) {
466 return 2; // opcode + rel8
467 } else if (lir->opcode == kX86Jmp32) {
468 return 5; // opcode + rel32
469 } else {
470 DCHECK(lir->opcode == kX86JmpR);
471 return 2; // opcode + modrm
472 }
473 case kCall:
474 switch (lir->opcode) {
475 case kX86CallR: return 2; // opcode modrm
476 case kX86CallM: // lir operands - 0: base, 1: disp
477 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
478 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
479 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
480 case kX86CallT: // lir operands - 0: disp
481 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
482 default:
483 break;
484 }
485 break;
486 case kPcRel:
487 if (entry->opcode == kX86PcRelLoadRA) {
488 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
489 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
490 } else {
491 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700492 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700493 }
494 case kMacro:
495 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
496 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
497 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
498 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
499 default:
500 break;
501 }
502 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
503 return 0;
504}
505
Vladimir Marko057c74a2013-12-03 15:20:45 +0000506void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
507 if (entry->skeleton.prefix1 != 0) {
508 code_buffer_.push_back(entry->skeleton.prefix1);
509 if (entry->skeleton.prefix2 != 0) {
510 code_buffer_.push_back(entry->skeleton.prefix2);
511 }
512 } else {
513 DCHECK_EQ(0, entry->skeleton.prefix2);
514 }
515}
516
517void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
518 code_buffer_.push_back(entry->skeleton.opcode);
519 if (entry->skeleton.opcode == 0x0F) {
520 code_buffer_.push_back(entry->skeleton.extra_opcode1);
521 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
522 code_buffer_.push_back(entry->skeleton.extra_opcode2);
523 } else {
524 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
525 }
526 } else {
527 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
528 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
529 }
530}
531
532void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
533 EmitPrefix(entry);
534 EmitOpcode(entry);
535}
536
Brian Carlstrom7940e442013-07-12 13:46:57 -0700537static uint8_t ModrmForDisp(int base, int disp) {
538 // BP requires an explicit disp, so do not omit it in the 0 case
539 if (disp == 0 && base != rBP) {
540 return 0;
541 } else if (IS_SIMM8(disp)) {
542 return 1;
543 } else {
544 return 2;
545 }
546}
547
Vladimir Marko057c74a2013-12-03 15:20:45 +0000548void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700549 // BP requires an explicit disp, so do not omit it in the 0 case
550 if (disp == 0 && base != rBP) {
551 return;
552 } else if (IS_SIMM8(disp)) {
553 code_buffer_.push_back(disp & 0xFF);
554 } else {
555 code_buffer_.push_back(disp & 0xFF);
556 code_buffer_.push_back((disp >> 8) & 0xFF);
557 code_buffer_.push_back((disp >> 16) & 0xFF);
558 code_buffer_.push_back((disp >> 24) & 0xFF);
559 }
560}
561
Vladimir Marko057c74a2013-12-03 15:20:45 +0000562void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
563 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700564 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000565 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700566 code_buffer_.push_back(modrm);
567 if (base == rX86_SP) {
568 // Special SIB for SP base
569 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
570 }
571 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700572}
573
Vladimir Marko057c74a2013-12-03 15:20:45 +0000574void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
575 int scale, int disp) {
576 DCHECK_LT(reg_or_opcode, 8);
577 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700578 code_buffer_.push_back(modrm);
579 DCHECK_LT(scale, 4);
580 DCHECK_LT(index, 8);
581 DCHECK_LT(base, 8);
582 uint8_t sib = (scale << 6) | (index << 3) | base;
583 code_buffer_.push_back(sib);
584 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700585}
586
Vladimir Marko057c74a2013-12-03 15:20:45 +0000587void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700588 switch (entry->skeleton.immediate_bytes) {
589 case 1:
590 DCHECK(IS_SIMM8(imm));
591 code_buffer_.push_back(imm & 0xFF);
592 break;
593 case 2:
594 DCHECK(IS_SIMM16(imm));
595 code_buffer_.push_back(imm & 0xFF);
596 code_buffer_.push_back((imm >> 8) & 0xFF);
597 break;
598 case 4:
599 code_buffer_.push_back(imm & 0xFF);
600 code_buffer_.push_back((imm >> 8) & 0xFF);
601 code_buffer_.push_back((imm >> 16) & 0xFF);
602 code_buffer_.push_back((imm >> 24) & 0xFF);
603 break;
604 default:
605 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
606 << ") for instruction: " << entry->name;
607 break;
608 }
609}
610
Vladimir Marko057c74a2013-12-03 15:20:45 +0000611void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
612 EmitPrefixAndOpcode(entry);
613 // There's no 3-byte instruction with +rd
614 DCHECK(entry->skeleton.opcode != 0x0F ||
615 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
616 DCHECK(!X86_FPREG(reg));
617 DCHECK_LT(reg, 8);
618 code_buffer_.back() += reg;
619 DCHECK_EQ(0, entry->skeleton.ax_opcode);
620 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
621}
622
623void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
624 EmitPrefixAndOpcode(entry);
625 if (X86_FPREG(reg)) {
626 reg = reg & X86_FP_REG_MASK;
627 }
628 if (reg >= 4) {
629 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
630 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
631 }
632 DCHECK_LT(reg, 8);
633 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
634 code_buffer_.push_back(modrm);
635 DCHECK_EQ(0, entry->skeleton.ax_opcode);
636 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
637}
638
639void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
640 EmitPrefix(entry);
641 code_buffer_.push_back(entry->skeleton.opcode);
642 DCHECK_NE(0x0F, entry->skeleton.opcode);
643 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
644 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
645 DCHECK_NE(rX86_SP, base);
646 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
647 DCHECK_EQ(0, entry->skeleton.ax_opcode);
648 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
649}
650
651void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
652 int scale, int disp) {
653 EmitPrefixAndOpcode(entry);
654 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
655 DCHECK_EQ(0, entry->skeleton.ax_opcode);
656 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
657}
658
659void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
660 uint8_t base, int disp, uint8_t reg) {
661 EmitPrefixAndOpcode(entry);
662 if (X86_FPREG(reg)) {
663 reg = reg & X86_FP_REG_MASK;
664 }
665 if (reg >= 4) {
666 DCHECK(strchr(entry->name, '8') == NULL ||
667 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
668 << entry->name << " " << static_cast<int>(reg)
669 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
670 }
671 EmitModrmDisp(reg, base, disp);
672 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
673 DCHECK_EQ(0, entry->skeleton.ax_opcode);
674 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
675}
676
677void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
678 uint8_t reg, uint8_t base, int disp) {
679 // Opcode will flip operands.
680 EmitMemReg(entry, base, disp, reg);
681}
682
683void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
684 int scale, int disp) {
685 EmitPrefixAndOpcode(entry);
686 if (X86_FPREG(reg)) {
687 reg = reg & X86_FP_REG_MASK;
688 }
689 EmitModrmSibDisp(reg, base, index, scale, disp);
690 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
691 DCHECK_EQ(0, entry->skeleton.ax_opcode);
692 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
693}
694
695void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
696 uint8_t reg) {
697 // Opcode will flip operands.
698 EmitRegArray(entry, reg, base, index, scale, disp);
699}
700
701void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
702 DCHECK_NE(entry->skeleton.prefix1, 0);
703 EmitPrefixAndOpcode(entry);
704 if (X86_FPREG(reg)) {
705 reg = reg & X86_FP_REG_MASK;
706 }
707 if (reg >= 4) {
708 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
709 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
710 }
711 DCHECK_LT(reg, 8);
712 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
713 code_buffer_.push_back(modrm);
714 code_buffer_.push_back(disp & 0xFF);
715 code_buffer_.push_back((disp >> 8) & 0xFF);
716 code_buffer_.push_back((disp >> 16) & 0xFF);
717 code_buffer_.push_back((disp >> 24) & 0xFF);
718 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
719 DCHECK_EQ(0, entry->skeleton.ax_opcode);
720 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
721}
722
723void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
724 EmitPrefixAndOpcode(entry);
725 if (X86_FPREG(reg1)) {
726 reg1 = reg1 & X86_FP_REG_MASK;
727 }
728 if (X86_FPREG(reg2)) {
729 reg2 = reg2 & X86_FP_REG_MASK;
730 }
731 DCHECK_LT(reg1, 8);
732 DCHECK_LT(reg2, 8);
733 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
734 code_buffer_.push_back(modrm);
735 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
736 DCHECK_EQ(0, entry->skeleton.ax_opcode);
737 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
738}
739
740void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
741 uint8_t reg1, uint8_t reg2, int32_t imm) {
742 EmitPrefixAndOpcode(entry);
743 if (X86_FPREG(reg1)) {
744 reg1 = reg1 & X86_FP_REG_MASK;
745 }
746 if (X86_FPREG(reg2)) {
747 reg2 = reg2 & X86_FP_REG_MASK;
748 }
749 DCHECK_LT(reg1, 8);
750 DCHECK_LT(reg2, 8);
751 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
752 code_buffer_.push_back(modrm);
753 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
754 DCHECK_EQ(0, entry->skeleton.ax_opcode);
755 EmitImm(entry, imm);
756}
757
Brian Carlstrom7940e442013-07-12 13:46:57 -0700758void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
759 if (entry->skeleton.prefix1 != 0) {
760 code_buffer_.push_back(entry->skeleton.prefix1);
761 if (entry->skeleton.prefix2 != 0) {
762 code_buffer_.push_back(entry->skeleton.prefix2);
763 }
764 } else {
765 DCHECK_EQ(0, entry->skeleton.prefix2);
766 }
767 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
768 code_buffer_.push_back(entry->skeleton.ax_opcode);
769 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000770 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700771 if (X86_FPREG(reg)) {
772 reg = reg & X86_FP_REG_MASK;
773 }
774 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
775 code_buffer_.push_back(modrm);
776 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000777 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700778}
779
Mark Mendell343adb52013-12-18 06:02:17 -0800780void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
781 EmitPrefixAndOpcode(entry);
782 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
783 DCHECK_EQ(0, entry->skeleton.ax_opcode);
784 EmitImm(entry, imm);
785}
786
Brian Carlstrom7940e442013-07-12 13:46:57 -0700787void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000788 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700789 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
790 code_buffer_.push_back(modrm);
791 code_buffer_.push_back(disp & 0xFF);
792 code_buffer_.push_back((disp >> 8) & 0xFF);
793 code_buffer_.push_back((disp >> 16) & 0xFF);
794 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000795 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700796 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
797}
798
799void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
800 DCHECK_LT(reg, 8);
801 code_buffer_.push_back(0xB8 + reg);
802 code_buffer_.push_back(imm & 0xFF);
803 code_buffer_.push_back((imm >> 8) & 0xFF);
804 code_buffer_.push_back((imm >> 16) & 0xFF);
805 code_buffer_.push_back((imm >> 24) & 0xFF);
806}
807
808void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000809 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700810 if (imm != 1) {
811 code_buffer_.push_back(entry->skeleton.opcode);
812 } else {
813 // Shorter encoding for 1 bit shift
814 code_buffer_.push_back(entry->skeleton.ax_opcode);
815 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000816 DCHECK_NE(0x0F, entry->skeleton.opcode);
817 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
818 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700819 if (reg >= 4) {
820 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
821 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
822 }
823 DCHECK_LT(reg, 8);
824 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
825 code_buffer_.push_back(modrm);
826 if (imm != 1) {
827 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
828 DCHECK(IS_SIMM8(imm));
829 code_buffer_.push_back(imm & 0xFF);
830 }
831}
832
833void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
834 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000835 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700836 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000837 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700838 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
839 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
840 DCHECK_LT(reg, 8);
841 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
842 code_buffer_.push_back(modrm);
843 DCHECK_EQ(0, entry->skeleton.ax_opcode);
844 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
845}
846
847void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
848 if (entry->skeleton.prefix1 != 0) {
849 code_buffer_.push_back(entry->skeleton.prefix1);
850 if (entry->skeleton.prefix2 != 0) {
851 code_buffer_.push_back(entry->skeleton.prefix2);
852 }
853 } else {
854 DCHECK_EQ(0, entry->skeleton.prefix2);
855 }
856 DCHECK_EQ(0, entry->skeleton.ax_opcode);
857 DCHECK_EQ(0x0F, entry->skeleton.opcode);
858 code_buffer_.push_back(0x0F);
859 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
860 code_buffer_.push_back(0x90 | condition);
861 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
862 DCHECK_LT(reg, 8);
863 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
864 code_buffer_.push_back(modrm);
865 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
866}
867
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800868void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
869 // Generate prefix and opcode without the condition
870 EmitPrefixAndOpcode(entry);
871
872 // Now add the condition. The last byte of opcode is the one that receives it.
873 DCHECK_LE(condition, 0xF);
874 code_buffer_.back() += condition;
875
876 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
877 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
878 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
879
880 // Check that registers requested for encoding are sane.
881 DCHECK_LT(reg1, 8);
882 DCHECK_LT(reg2, 8);
883
884 // For register to register encoding, the mod is 3.
885 const uint8_t mod = (3 << 6);
886
887 // Encode the ModR/M byte now.
888 const uint8_t modrm = mod | (reg1 << 3) | reg2;
889 code_buffer_.push_back(modrm);
890}
891
Brian Carlstrom7940e442013-07-12 13:46:57 -0700892void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
893 if (entry->opcode == kX86Jmp8) {
894 DCHECK(IS_SIMM8(rel));
895 code_buffer_.push_back(0xEB);
896 code_buffer_.push_back(rel & 0xFF);
897 } else if (entry->opcode == kX86Jmp32) {
898 code_buffer_.push_back(0xE9);
899 code_buffer_.push_back(rel & 0xFF);
900 code_buffer_.push_back((rel >> 8) & 0xFF);
901 code_buffer_.push_back((rel >> 16) & 0xFF);
902 code_buffer_.push_back((rel >> 24) & 0xFF);
903 } else {
904 DCHECK(entry->opcode == kX86JmpR);
905 code_buffer_.push_back(entry->skeleton.opcode);
906 uint8_t reg = static_cast<uint8_t>(rel);
907 DCHECK_LT(reg, 8);
908 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
909 code_buffer_.push_back(modrm);
910 }
911}
912
913void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
914 DCHECK_LT(cc, 16);
915 if (entry->opcode == kX86Jcc8) {
916 DCHECK(IS_SIMM8(rel));
917 code_buffer_.push_back(0x70 | cc);
918 code_buffer_.push_back(rel & 0xFF);
919 } else {
920 DCHECK(entry->opcode == kX86Jcc32);
921 code_buffer_.push_back(0x0F);
922 code_buffer_.push_back(0x80 | cc);
923 code_buffer_.push_back(rel & 0xFF);
924 code_buffer_.push_back((rel >> 8) & 0xFF);
925 code_buffer_.push_back((rel >> 16) & 0xFF);
926 code_buffer_.push_back((rel >> 24) & 0xFF);
927 }
928}
929
930void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000931 EmitPrefixAndOpcode(entry);
932 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700933 DCHECK_EQ(0, entry->skeleton.ax_opcode);
934 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
935}
936
937void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
938 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000939 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700940 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
941 code_buffer_.push_back(modrm);
942 code_buffer_.push_back(disp & 0xFF);
943 code_buffer_.push_back((disp >> 8) & 0xFF);
944 code_buffer_.push_back((disp >> 16) & 0xFF);
945 code_buffer_.push_back((disp >> 24) & 0xFF);
946 DCHECK_EQ(0, entry->skeleton.ax_opcode);
947 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
948}
949
950void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
951 int base_or_table, uint8_t index, int scale, int table_or_disp) {
952 int disp;
953 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700954 Mir2Lir::EmbeddedData *tab_rec =
955 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700956 disp = tab_rec->offset;
957 } else {
958 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700959 Mir2Lir::EmbeddedData *tab_rec =
960 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700961 disp = tab_rec->offset;
962 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000963 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700964 if (X86_FPREG(reg)) {
965 reg = reg & X86_FP_REG_MASK;
966 }
967 DCHECK_LT(reg, 8);
968 if (entry->opcode == kX86PcRelLoadRA) {
969 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000970 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700971 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
972 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
973 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
974 code_buffer_.push_back(modrm);
975 DCHECK_LT(scale, 4);
976 DCHECK_LT(index, 8);
977 DCHECK_LT(base_or_table, 8);
978 uint8_t base = static_cast<uint8_t>(base_or_table);
979 uint8_t sib = (scale << 6) | (index << 3) | base;
980 code_buffer_.push_back(sib);
981 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
982 } else {
983 code_buffer_.push_back(entry->skeleton.opcode + reg);
984 }
985 code_buffer_.push_back(disp & 0xFF);
986 code_buffer_.push_back((disp >> 8) & 0xFF);
987 code_buffer_.push_back((disp >> 16) & 0xFF);
988 code_buffer_.push_back((disp >> 24) & 0xFF);
989 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
990 DCHECK_EQ(0, entry->skeleton.ax_opcode);
991}
992
993void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
994 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
995 code_buffer_.push_back(0xE8); // call +0
996 code_buffer_.push_back(0);
997 code_buffer_.push_back(0);
998 code_buffer_.push_back(0);
999 code_buffer_.push_back(0);
1000
1001 DCHECK_LT(reg, 8);
1002 code_buffer_.push_back(0x58 + reg); // pop reg
1003
1004 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1005}
1006
1007void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1008 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1009 << BuildInsnString(entry->fmt, lir, 0);
1010 for (int i = 0; i < GetInsnSize(lir); ++i) {
1011 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1012 }
1013}
1014
1015/*
1016 * Assemble the LIR into binary instruction format. Note that we may
1017 * discover that pc-relative displacements may not fit the selected
1018 * instruction. In those cases we will try to substitute a new code
1019 * sequence or request that the trace be shortened and retried.
1020 */
buzbee0d829482013-10-11 15:24:55 -07001021AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001022 LIR *lir;
1023 AssemblerStatus res = kSuccess; // Assume success
1024
1025 const bool kVerbosePcFixup = false;
1026 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001027 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001028 continue;
1029 }
1030
1031 if (lir->flags.is_nop) {
1032 continue;
1033 }
1034
buzbeeb48819d2013-09-14 16:15:25 -07001035 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001036 switch (lir->opcode) {
1037 case kX86Jcc8: {
1038 LIR *target_lir = lir->target;
1039 DCHECK(target_lir != NULL);
1040 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001041 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001042 if (IS_SIMM8(lir->operands[0])) {
1043 pc = lir->offset + 2 /* opcode + rel8 */;
1044 } else {
1045 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1046 }
buzbee0d829482013-10-11 15:24:55 -07001047 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001048 delta = target - pc;
1049 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1050 if (kVerbosePcFixup) {
1051 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1052 << " delta: " << delta << " old delta: " << lir->operands[0];
1053 }
1054 lir->opcode = kX86Jcc32;
1055 SetupResourceMasks(lir);
1056 res = kRetryAll;
1057 }
1058 if (kVerbosePcFixup) {
1059 LOG(INFO) << "Source:";
1060 DumpLIRInsn(lir, 0);
1061 LOG(INFO) << "Target:";
1062 DumpLIRInsn(target_lir, 0);
1063 LOG(INFO) << "Delta " << delta;
1064 }
1065 lir->operands[0] = delta;
1066 break;
1067 }
1068 case kX86Jcc32: {
1069 LIR *target_lir = lir->target;
1070 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001071 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1072 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001073 int delta = target - pc;
1074 if (kVerbosePcFixup) {
1075 LOG(INFO) << "Source:";
1076 DumpLIRInsn(lir, 0);
1077 LOG(INFO) << "Target:";
1078 DumpLIRInsn(target_lir, 0);
1079 LOG(INFO) << "Delta " << delta;
1080 }
1081 lir->operands[0] = delta;
1082 break;
1083 }
1084 case kX86Jmp8: {
1085 LIR *target_lir = lir->target;
1086 DCHECK(target_lir != NULL);
1087 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001088 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001089 if (IS_SIMM8(lir->operands[0])) {
1090 pc = lir->offset + 2 /* opcode + rel8 */;
1091 } else {
1092 pc = lir->offset + 5 /* opcode + rel32 */;
1093 }
buzbee0d829482013-10-11 15:24:55 -07001094 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001095 delta = target - pc;
1096 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1097 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001098 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001099 if (kVerbosePcFixup) {
1100 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1101 }
1102 res = kRetryAll;
1103 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1104 if (kVerbosePcFixup) {
1105 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1106 }
1107 lir->opcode = kX86Jmp32;
1108 SetupResourceMasks(lir);
1109 res = kRetryAll;
1110 }
1111 lir->operands[0] = delta;
1112 break;
1113 }
1114 case kX86Jmp32: {
1115 LIR *target_lir = lir->target;
1116 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001117 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1118 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001119 int delta = target - pc;
1120 lir->operands[0] = delta;
1121 break;
1122 }
1123 default:
1124 break;
1125 }
1126 }
1127
1128 /*
1129 * If one of the pc-relative instructions expanded we'll have
1130 * to make another pass. Don't bother to fully assemble the
1131 * instruction.
1132 */
1133 if (res != kSuccess) {
1134 continue;
1135 }
1136 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1137 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1138 size_t starting_cbuf_size = code_buffer_.size();
1139 switch (entry->kind) {
1140 case kData: // 4 bytes of data
1141 code_buffer_.push_back(lir->operands[0]);
1142 break;
1143 case kNullary: // 1 byte of opcode
1144 DCHECK_EQ(0, entry->skeleton.prefix1);
1145 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001146 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001147 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1148 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1149 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1150 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001151 case kRegOpcode: // lir operands - 0: reg
1152 EmitOpRegOpcode(entry, lir->operands[0]);
1153 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001154 case kReg: // lir operands - 0: reg
1155 EmitOpReg(entry, lir->operands[0]);
1156 break;
1157 case kMem: // lir operands - 0: base, 1: disp
1158 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1159 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001160 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1161 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1162 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001163 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1164 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1165 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001166 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1167 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1168 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001169 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1170 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1171 lir->operands[3], lir->operands[4]);
1172 break;
1173 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1174 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1175 break;
1176 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1177 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1178 lir->operands[3], lir->operands[4]);
1179 break;
1180 case kRegThread: // lir operands - 0: reg, 1: disp
1181 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1182 break;
1183 case kRegReg: // lir operands - 0: reg1, 1: reg2
1184 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1185 break;
1186 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1187 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1188 break;
1189 case kRegRegImm:
1190 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1191 break;
1192 case kRegImm: // lir operands - 0: reg, 1: immediate
1193 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1194 break;
1195 case kThreadImm: // lir operands - 0: disp, 1: immediate
1196 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1197 break;
1198 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1199 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1200 break;
1201 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1202 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1203 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001204 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001205 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1206 break;
1207 case kRegCond: // lir operands - 0: reg, 1: condition
1208 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1209 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001210 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1211 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1212 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001213 case kJmp: // lir operands - 0: rel
1214 EmitJmp(entry, lir->operands[0]);
1215 break;
1216 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1217 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1218 break;
1219 case kCall:
1220 switch (entry->opcode) {
1221 case kX86CallM: // lir operands - 0: base, 1: disp
1222 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1223 break;
1224 case kX86CallT: // lir operands - 0: disp
1225 EmitCallThread(entry, lir->operands[0]);
1226 break;
1227 default:
1228 EmitUnimplemented(entry, lir);
1229 break;
1230 }
1231 break;
1232 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1233 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1234 lir->operands[3], lir->operands[4]);
1235 break;
1236 case kMacro:
1237 EmitMacro(entry, lir->operands[0], lir->offset);
1238 break;
1239 default:
1240 EmitUnimplemented(entry, lir);
1241 break;
1242 }
1243 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1244 code_buffer_.size() - starting_cbuf_size)
1245 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1246 }
1247 return res;
1248}
1249
buzbeeb48819d2013-09-14 16:15:25 -07001250// LIR offset assignment.
1251// TODO: consolidate w/ Arm assembly mechanism.
1252int X86Mir2Lir::AssignInsnOffsets() {
1253 LIR* lir;
1254 int offset = 0;
1255
1256 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1257 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001258 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001259 if (!lir->flags.is_nop) {
1260 offset += lir->flags.size;
1261 }
1262 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1263 if (offset & 0x2) {
1264 offset += 2;
1265 lir->operands[0] = 1;
1266 } else {
1267 lir->operands[0] = 0;
1268 }
1269 }
1270 /* Pseudo opcodes don't consume space */
1271 }
1272 return offset;
1273}
1274
1275/*
1276 * Walk the compilation unit and assign offsets to instructions
1277 * and literals and compute the total size of the compiled unit.
1278 * TODO: consolidate w/ Arm assembly mechanism.
1279 */
1280void X86Mir2Lir::AssignOffsets() {
1281 int offset = AssignInsnOffsets();
1282
1283 /* Const values have to be word aligned */
1284 offset = (offset + 3) & ~3;
1285
1286 /* Set up offsets for literals */
1287 data_offset_ = offset;
1288
1289 offset = AssignLiteralOffset(offset);
1290
1291 offset = AssignSwitchTablesOffset(offset);
1292
1293 offset = AssignFillArrayDataOffset(offset);
1294
1295 total_size_ = offset;
1296}
1297
1298/*
1299 * Go over each instruction in the list and calculate the offset from the top
1300 * before sending them off to the assembler. If out-of-range branch distance is
1301 * seen rearrange the instructions a bit to correct it.
1302 * TODO: consolidate w/ Arm assembly mechanism.
1303 */
1304void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001305 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001306 AssignOffsets();
1307 int assembler_retries = 0;
1308 /*
1309 * Assemble here. Note that we generate code with optimistic assumptions
1310 * and if found now to work, we'll have to redo the sequence and retry.
1311 */
1312
1313 while (true) {
1314 AssemblerStatus res = AssembleInstructions(0);
1315 if (res == kSuccess) {
1316 break;
1317 } else {
1318 assembler_retries++;
1319 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1320 CodegenDump();
1321 LOG(FATAL) << "Assembler error - too many retries";
1322 }
1323 // Redo offsets and try again
1324 AssignOffsets();
1325 code_buffer_.clear();
1326 }
1327 }
1328
1329 // Install literals
1330 InstallLiteralPools();
1331
1332 // Install switch tables
1333 InstallSwitchTables();
1334
1335 // Install fill array data
1336 InstallFillArrayData();
1337
1338 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001339 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001340 CreateMappingTables();
1341
buzbeea61f4952013-08-23 14:27:06 -07001342 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001343 CreateNativeGcMap();
1344}
1345
Brian Carlstrom7940e442013-07-12 13:46:57 -07001346} // namespace art