blob: 6d092d611ae8f237f7f4d127163eb9c7af1c1ca7 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
Mark Mendell4708dcd2014-01-22 09:05:18 -0800214 { kX86Shld32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32", "!0r,!1r,!2d" },
215 { kX86Shrd32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32", "!0r,!1r,!2d" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700216
217 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
218 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
219 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
220 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
221 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
222 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
223 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
224 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
225 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
226 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
227
228#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
229 reg, reg_kind, reg_flags, \
230 mem, mem_kind, mem_flags, \
231 arr, arr_kind, arr_flags, imm, \
232 b_flags, hw_flags, w_flags, \
233 b_format, hw_format, w_format) \
234{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
235{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
236{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
237{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
238{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
239{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
240{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
241{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
242{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
243
244 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
245 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
246
Mark Mendell2bf31e62014-01-23 12:13:40 -0800247 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
248 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
249 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
250 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700251#undef UNARY_ENCODING_MAP
252
Mark Mendell2bf31e62014-01-23 12:13:40 -0800253 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000254 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
255 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
256 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100257
Brian Carlstrom7940e442013-07-12 13:46:57 -0700258#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
259{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
260{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
261{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
262
263 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
264 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
265 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
266
267 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
268 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
269 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
270
271 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
279 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
280 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
281 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
291 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
292 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
293
294 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
295 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800296 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000297 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700298
299 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
300 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
301 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
302 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
303
304 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
305 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
306 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
307
308 // TODO: load/store?
309 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
310 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
311
312 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
313 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
314
315 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
316 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
317 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700318 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
319 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000320 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
321 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700322
323 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
324 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
325 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
326 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
327#undef EXT_0F_ENCODING_MAP
328
329 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
330 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
331 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
332 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
333 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
334 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
335 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
336 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
337 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700338 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700339
340 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
341 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
342 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
343};
344
345static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
346 size_t size = 0;
347 if (entry->skeleton.prefix1 > 0) {
348 ++size;
349 if (entry->skeleton.prefix2 > 0) {
350 ++size;
351 }
352 }
353 ++size; // opcode
354 if (entry->skeleton.opcode == 0x0F) {
355 ++size;
356 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
357 ++size;
358 }
359 }
360 ++size; // modrm
361 if (has_sib || base == rX86_SP) {
362 // SP requires a SIB byte.
363 ++size;
364 }
365 if (displacement != 0 || base == rBP) {
366 // BP requires an explicit displacement, even when it's 0.
367 if (entry->opcode != kX86Lea32RA) {
368 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
369 }
370 size += IS_SIMM8(displacement) ? 1 : 4;
371 }
372 size += entry->skeleton.immediate_bytes;
373 return size;
374}
375
376int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700377 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700378 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
379 switch (entry->kind) {
380 case kData:
381 return 4; // 4 bytes of data
382 case kNop:
383 return lir->operands[0]; // length of nop is sole operand
384 case kNullary:
385 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100386 case kRegOpcode: // lir operands - 0: reg
387 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700388 case kReg: // lir operands - 0: reg
389 return ComputeSize(entry, 0, 0, false);
390 case kMem: // lir operands - 0: base, 1: disp
391 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
392 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
393 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
394 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
395 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
396 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
397 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
398 case kThreadReg: // lir operands - 0: disp, 1: reg
399 return ComputeSize(entry, 0, lir->operands[0], false);
400 case kRegReg:
401 return ComputeSize(entry, 0, 0, false);
402 case kRegRegStore:
403 return ComputeSize(entry, 0, 0, false);
404 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
405 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
406 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
407 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
408 case kRegThread: // lir operands - 0: reg, 1: disp
409 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
410 case kRegImm: { // lir operands - 0: reg, 1: immediate
411 size_t size = ComputeSize(entry, 0, 0, false);
412 if (entry->skeleton.ax_opcode == 0) {
413 return size;
414 } else {
415 // AX opcodes don't require the modrm byte.
416 int reg = lir->operands[0];
417 return size - (reg == rAX ? 1 : 0);
418 }
419 }
420 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
421 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
422 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
423 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
424 case kThreadImm: // lir operands - 0: disp, 1: imm
425 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
426 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
Mark Mendell4708dcd2014-01-22 09:05:18 -0800427 case kRegRegImmRev:
Brian Carlstrom7940e442013-07-12 13:46:57 -0700428 return ComputeSize(entry, 0, 0, false);
429 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
430 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
431 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
432 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
433 case kMovRegImm: // lir operands - 0: reg, 1: immediate
434 return 1 + entry->skeleton.immediate_bytes;
435 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
436 // Shift by immediate one has a shorter opcode.
437 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
438 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
439 // Shift by immediate one has a shorter opcode.
440 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
441 (lir->operands[2] == 1 ? 1 : 0);
442 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
443 // Shift by immediate one has a shorter opcode.
444 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
445 (lir->operands[4] == 1 ? 1 : 0);
446 case kShiftRegCl:
447 return ComputeSize(entry, 0, 0, false);
448 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
449 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
450 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
451 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
452 case kRegCond: // lir operands - 0: reg, 1: cond
453 return ComputeSize(entry, 0, 0, false);
454 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
455 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
456 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
457 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800458 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
459 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700460 case kJcc:
461 if (lir->opcode == kX86Jcc8) {
462 return 2; // opcode + rel8
463 } else {
464 DCHECK(lir->opcode == kX86Jcc32);
465 return 6; // 2 byte opcode + rel32
466 }
467 case kJmp:
468 if (lir->opcode == kX86Jmp8) {
469 return 2; // opcode + rel8
470 } else if (lir->opcode == kX86Jmp32) {
471 return 5; // opcode + rel32
472 } else {
473 DCHECK(lir->opcode == kX86JmpR);
474 return 2; // opcode + modrm
475 }
476 case kCall:
477 switch (lir->opcode) {
478 case kX86CallR: return 2; // opcode modrm
479 case kX86CallM: // lir operands - 0: base, 1: disp
480 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
481 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
482 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
483 case kX86CallT: // lir operands - 0: disp
484 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
485 default:
486 break;
487 }
488 break;
489 case kPcRel:
490 if (entry->opcode == kX86PcRelLoadRA) {
491 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
492 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
493 } else {
494 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700495 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700496 }
497 case kMacro:
498 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
499 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
500 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
501 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
502 default:
503 break;
504 }
505 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
506 return 0;
507}
508
Vladimir Marko057c74a2013-12-03 15:20:45 +0000509void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
510 if (entry->skeleton.prefix1 != 0) {
511 code_buffer_.push_back(entry->skeleton.prefix1);
512 if (entry->skeleton.prefix2 != 0) {
513 code_buffer_.push_back(entry->skeleton.prefix2);
514 }
515 } else {
516 DCHECK_EQ(0, entry->skeleton.prefix2);
517 }
518}
519
520void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
521 code_buffer_.push_back(entry->skeleton.opcode);
522 if (entry->skeleton.opcode == 0x0F) {
523 code_buffer_.push_back(entry->skeleton.extra_opcode1);
524 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
525 code_buffer_.push_back(entry->skeleton.extra_opcode2);
526 } else {
527 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
528 }
529 } else {
530 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
531 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
532 }
533}
534
535void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
536 EmitPrefix(entry);
537 EmitOpcode(entry);
538}
539
Brian Carlstrom7940e442013-07-12 13:46:57 -0700540static uint8_t ModrmForDisp(int base, int disp) {
541 // BP requires an explicit disp, so do not omit it in the 0 case
542 if (disp == 0 && base != rBP) {
543 return 0;
544 } else if (IS_SIMM8(disp)) {
545 return 1;
546 } else {
547 return 2;
548 }
549}
550
Vladimir Marko057c74a2013-12-03 15:20:45 +0000551void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700552 // BP requires an explicit disp, so do not omit it in the 0 case
553 if (disp == 0 && base != rBP) {
554 return;
555 } else if (IS_SIMM8(disp)) {
556 code_buffer_.push_back(disp & 0xFF);
557 } else {
558 code_buffer_.push_back(disp & 0xFF);
559 code_buffer_.push_back((disp >> 8) & 0xFF);
560 code_buffer_.push_back((disp >> 16) & 0xFF);
561 code_buffer_.push_back((disp >> 24) & 0xFF);
562 }
563}
564
Vladimir Marko057c74a2013-12-03 15:20:45 +0000565void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
566 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700567 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000568 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700569 code_buffer_.push_back(modrm);
570 if (base == rX86_SP) {
571 // Special SIB for SP base
572 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
573 }
574 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700575}
576
Vladimir Marko057c74a2013-12-03 15:20:45 +0000577void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
578 int scale, int disp) {
579 DCHECK_LT(reg_or_opcode, 8);
580 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700581 code_buffer_.push_back(modrm);
582 DCHECK_LT(scale, 4);
583 DCHECK_LT(index, 8);
584 DCHECK_LT(base, 8);
585 uint8_t sib = (scale << 6) | (index << 3) | base;
586 code_buffer_.push_back(sib);
587 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700588}
589
Vladimir Marko057c74a2013-12-03 15:20:45 +0000590void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700591 switch (entry->skeleton.immediate_bytes) {
592 case 1:
593 DCHECK(IS_SIMM8(imm));
594 code_buffer_.push_back(imm & 0xFF);
595 break;
596 case 2:
597 DCHECK(IS_SIMM16(imm));
598 code_buffer_.push_back(imm & 0xFF);
599 code_buffer_.push_back((imm >> 8) & 0xFF);
600 break;
601 case 4:
602 code_buffer_.push_back(imm & 0xFF);
603 code_buffer_.push_back((imm >> 8) & 0xFF);
604 code_buffer_.push_back((imm >> 16) & 0xFF);
605 code_buffer_.push_back((imm >> 24) & 0xFF);
606 break;
607 default:
608 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
609 << ") for instruction: " << entry->name;
610 break;
611 }
612}
613
Vladimir Marko057c74a2013-12-03 15:20:45 +0000614void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
615 EmitPrefixAndOpcode(entry);
616 // There's no 3-byte instruction with +rd
617 DCHECK(entry->skeleton.opcode != 0x0F ||
618 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
619 DCHECK(!X86_FPREG(reg));
620 DCHECK_LT(reg, 8);
621 code_buffer_.back() += reg;
622 DCHECK_EQ(0, entry->skeleton.ax_opcode);
623 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
624}
625
626void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
627 EmitPrefixAndOpcode(entry);
628 if (X86_FPREG(reg)) {
629 reg = reg & X86_FP_REG_MASK;
630 }
631 if (reg >= 4) {
632 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
633 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
634 }
635 DCHECK_LT(reg, 8);
636 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
637 code_buffer_.push_back(modrm);
638 DCHECK_EQ(0, entry->skeleton.ax_opcode);
639 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
640}
641
642void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
643 EmitPrefix(entry);
644 code_buffer_.push_back(entry->skeleton.opcode);
645 DCHECK_NE(0x0F, entry->skeleton.opcode);
646 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
647 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000648 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
649 DCHECK_EQ(0, entry->skeleton.ax_opcode);
650 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
651}
652
653void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
654 int scale, int disp) {
655 EmitPrefixAndOpcode(entry);
656 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
657 DCHECK_EQ(0, entry->skeleton.ax_opcode);
658 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
659}
660
661void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
662 uint8_t base, int disp, uint8_t reg) {
663 EmitPrefixAndOpcode(entry);
664 if (X86_FPREG(reg)) {
665 reg = reg & X86_FP_REG_MASK;
666 }
667 if (reg >= 4) {
668 DCHECK(strchr(entry->name, '8') == NULL ||
669 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
670 << entry->name << " " << static_cast<int>(reg)
671 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
672 }
673 EmitModrmDisp(reg, base, disp);
674 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
675 DCHECK_EQ(0, entry->skeleton.ax_opcode);
676 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
677}
678
679void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
680 uint8_t reg, uint8_t base, int disp) {
681 // Opcode will flip operands.
682 EmitMemReg(entry, base, disp, reg);
683}
684
685void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
686 int scale, int disp) {
687 EmitPrefixAndOpcode(entry);
688 if (X86_FPREG(reg)) {
689 reg = reg & X86_FP_REG_MASK;
690 }
691 EmitModrmSibDisp(reg, base, index, scale, disp);
692 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
693 DCHECK_EQ(0, entry->skeleton.ax_opcode);
694 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
695}
696
697void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
698 uint8_t reg) {
699 // Opcode will flip operands.
700 EmitRegArray(entry, reg, base, index, scale, disp);
701}
702
703void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
704 DCHECK_NE(entry->skeleton.prefix1, 0);
705 EmitPrefixAndOpcode(entry);
706 if (X86_FPREG(reg)) {
707 reg = reg & X86_FP_REG_MASK;
708 }
709 if (reg >= 4) {
710 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
711 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
712 }
713 DCHECK_LT(reg, 8);
714 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
715 code_buffer_.push_back(modrm);
716 code_buffer_.push_back(disp & 0xFF);
717 code_buffer_.push_back((disp >> 8) & 0xFF);
718 code_buffer_.push_back((disp >> 16) & 0xFF);
719 code_buffer_.push_back((disp >> 24) & 0xFF);
720 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
721 DCHECK_EQ(0, entry->skeleton.ax_opcode);
722 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
723}
724
725void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
726 EmitPrefixAndOpcode(entry);
727 if (X86_FPREG(reg1)) {
728 reg1 = reg1 & X86_FP_REG_MASK;
729 }
730 if (X86_FPREG(reg2)) {
731 reg2 = reg2 & X86_FP_REG_MASK;
732 }
733 DCHECK_LT(reg1, 8);
734 DCHECK_LT(reg2, 8);
735 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
736 code_buffer_.push_back(modrm);
737 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
738 DCHECK_EQ(0, entry->skeleton.ax_opcode);
739 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
740}
741
742void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
743 uint8_t reg1, uint8_t reg2, int32_t imm) {
744 EmitPrefixAndOpcode(entry);
745 if (X86_FPREG(reg1)) {
746 reg1 = reg1 & X86_FP_REG_MASK;
747 }
748 if (X86_FPREG(reg2)) {
749 reg2 = reg2 & X86_FP_REG_MASK;
750 }
751 DCHECK_LT(reg1, 8);
752 DCHECK_LT(reg2, 8);
753 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
754 code_buffer_.push_back(modrm);
755 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
756 DCHECK_EQ(0, entry->skeleton.ax_opcode);
757 EmitImm(entry, imm);
758}
759
Mark Mendell4708dcd2014-01-22 09:05:18 -0800760void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
761 uint8_t reg1, uint8_t reg2, int32_t imm) {
762 EmitRegRegImm(entry, reg2, reg1, imm);
763}
764
765void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
766 uint8_t reg, uint8_t base, int disp, int32_t imm) {
767 EmitPrefixAndOpcode(entry);
768 DCHECK(!X86_FPREG(reg));
769 DCHECK_LT(reg, 8);
770 EmitModrmDisp(reg, base, disp);
771 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
772 DCHECK_EQ(0, entry->skeleton.ax_opcode);
773 EmitImm(entry, imm);
774}
775
Brian Carlstrom7940e442013-07-12 13:46:57 -0700776void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
777 if (entry->skeleton.prefix1 != 0) {
778 code_buffer_.push_back(entry->skeleton.prefix1);
779 if (entry->skeleton.prefix2 != 0) {
780 code_buffer_.push_back(entry->skeleton.prefix2);
781 }
782 } else {
783 DCHECK_EQ(0, entry->skeleton.prefix2);
784 }
785 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
786 code_buffer_.push_back(entry->skeleton.ax_opcode);
787 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000788 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700789 if (X86_FPREG(reg)) {
790 reg = reg & X86_FP_REG_MASK;
791 }
792 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
793 code_buffer_.push_back(modrm);
794 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000795 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700796}
797
Mark Mendell343adb52013-12-18 06:02:17 -0800798void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
799 EmitPrefixAndOpcode(entry);
800 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
801 DCHECK_EQ(0, entry->skeleton.ax_opcode);
802 EmitImm(entry, imm);
803}
804
Brian Carlstrom7940e442013-07-12 13:46:57 -0700805void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000806 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700807 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
808 code_buffer_.push_back(modrm);
809 code_buffer_.push_back(disp & 0xFF);
810 code_buffer_.push_back((disp >> 8) & 0xFF);
811 code_buffer_.push_back((disp >> 16) & 0xFF);
812 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000813 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700814 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
815}
816
817void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
818 DCHECK_LT(reg, 8);
819 code_buffer_.push_back(0xB8 + reg);
820 code_buffer_.push_back(imm & 0xFF);
821 code_buffer_.push_back((imm >> 8) & 0xFF);
822 code_buffer_.push_back((imm >> 16) & 0xFF);
823 code_buffer_.push_back((imm >> 24) & 0xFF);
824}
825
826void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000827 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700828 if (imm != 1) {
829 code_buffer_.push_back(entry->skeleton.opcode);
830 } else {
831 // Shorter encoding for 1 bit shift
832 code_buffer_.push_back(entry->skeleton.ax_opcode);
833 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000834 DCHECK_NE(0x0F, entry->skeleton.opcode);
835 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
836 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 if (reg >= 4) {
838 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
839 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
840 }
841 DCHECK_LT(reg, 8);
842 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
843 code_buffer_.push_back(modrm);
844 if (imm != 1) {
845 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
846 DCHECK(IS_SIMM8(imm));
847 code_buffer_.push_back(imm & 0xFF);
848 }
849}
850
851void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
852 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000853 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700854 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000855 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700856 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
857 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
858 DCHECK_LT(reg, 8);
859 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
860 code_buffer_.push_back(modrm);
861 DCHECK_EQ(0, entry->skeleton.ax_opcode);
862 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
863}
864
865void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
866 if (entry->skeleton.prefix1 != 0) {
867 code_buffer_.push_back(entry->skeleton.prefix1);
868 if (entry->skeleton.prefix2 != 0) {
869 code_buffer_.push_back(entry->skeleton.prefix2);
870 }
871 } else {
872 DCHECK_EQ(0, entry->skeleton.prefix2);
873 }
874 DCHECK_EQ(0, entry->skeleton.ax_opcode);
875 DCHECK_EQ(0x0F, entry->skeleton.opcode);
876 code_buffer_.push_back(0x0F);
877 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
878 code_buffer_.push_back(0x90 | condition);
879 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
880 DCHECK_LT(reg, 8);
881 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
882 code_buffer_.push_back(modrm);
883 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
884}
885
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800886void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
887 // Generate prefix and opcode without the condition
888 EmitPrefixAndOpcode(entry);
889
890 // Now add the condition. The last byte of opcode is the one that receives it.
891 DCHECK_LE(condition, 0xF);
892 code_buffer_.back() += condition;
893
894 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
895 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
896 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
897
898 // Check that registers requested for encoding are sane.
899 DCHECK_LT(reg1, 8);
900 DCHECK_LT(reg2, 8);
901
902 // For register to register encoding, the mod is 3.
903 const uint8_t mod = (3 << 6);
904
905 // Encode the ModR/M byte now.
906 const uint8_t modrm = mod | (reg1 << 3) | reg2;
907 code_buffer_.push_back(modrm);
908}
909
Brian Carlstrom7940e442013-07-12 13:46:57 -0700910void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
911 if (entry->opcode == kX86Jmp8) {
912 DCHECK(IS_SIMM8(rel));
913 code_buffer_.push_back(0xEB);
914 code_buffer_.push_back(rel & 0xFF);
915 } else if (entry->opcode == kX86Jmp32) {
916 code_buffer_.push_back(0xE9);
917 code_buffer_.push_back(rel & 0xFF);
918 code_buffer_.push_back((rel >> 8) & 0xFF);
919 code_buffer_.push_back((rel >> 16) & 0xFF);
920 code_buffer_.push_back((rel >> 24) & 0xFF);
921 } else {
922 DCHECK(entry->opcode == kX86JmpR);
923 code_buffer_.push_back(entry->skeleton.opcode);
924 uint8_t reg = static_cast<uint8_t>(rel);
925 DCHECK_LT(reg, 8);
926 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
927 code_buffer_.push_back(modrm);
928 }
929}
930
931void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
932 DCHECK_LT(cc, 16);
933 if (entry->opcode == kX86Jcc8) {
934 DCHECK(IS_SIMM8(rel));
935 code_buffer_.push_back(0x70 | cc);
936 code_buffer_.push_back(rel & 0xFF);
937 } else {
938 DCHECK(entry->opcode == kX86Jcc32);
939 code_buffer_.push_back(0x0F);
940 code_buffer_.push_back(0x80 | cc);
941 code_buffer_.push_back(rel & 0xFF);
942 code_buffer_.push_back((rel >> 8) & 0xFF);
943 code_buffer_.push_back((rel >> 16) & 0xFF);
944 code_buffer_.push_back((rel >> 24) & 0xFF);
945 }
946}
947
948void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000949 EmitPrefixAndOpcode(entry);
950 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700951 DCHECK_EQ(0, entry->skeleton.ax_opcode);
952 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
953}
954
955void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
956 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000957 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700958 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
959 code_buffer_.push_back(modrm);
960 code_buffer_.push_back(disp & 0xFF);
961 code_buffer_.push_back((disp >> 8) & 0xFF);
962 code_buffer_.push_back((disp >> 16) & 0xFF);
963 code_buffer_.push_back((disp >> 24) & 0xFF);
964 DCHECK_EQ(0, entry->skeleton.ax_opcode);
965 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
966}
967
968void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
969 int base_or_table, uint8_t index, int scale, int table_or_disp) {
970 int disp;
971 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700972 Mir2Lir::EmbeddedData *tab_rec =
973 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700974 disp = tab_rec->offset;
975 } else {
976 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700977 Mir2Lir::EmbeddedData *tab_rec =
978 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700979 disp = tab_rec->offset;
980 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000981 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700982 if (X86_FPREG(reg)) {
983 reg = reg & X86_FP_REG_MASK;
984 }
985 DCHECK_LT(reg, 8);
986 if (entry->opcode == kX86PcRelLoadRA) {
987 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000988 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700989 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
990 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
991 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
992 code_buffer_.push_back(modrm);
993 DCHECK_LT(scale, 4);
994 DCHECK_LT(index, 8);
995 DCHECK_LT(base_or_table, 8);
996 uint8_t base = static_cast<uint8_t>(base_or_table);
997 uint8_t sib = (scale << 6) | (index << 3) | base;
998 code_buffer_.push_back(sib);
999 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1000 } else {
1001 code_buffer_.push_back(entry->skeleton.opcode + reg);
1002 }
1003 code_buffer_.push_back(disp & 0xFF);
1004 code_buffer_.push_back((disp >> 8) & 0xFF);
1005 code_buffer_.push_back((disp >> 16) & 0xFF);
1006 code_buffer_.push_back((disp >> 24) & 0xFF);
1007 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1008 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1009}
1010
1011void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1012 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1013 code_buffer_.push_back(0xE8); // call +0
1014 code_buffer_.push_back(0);
1015 code_buffer_.push_back(0);
1016 code_buffer_.push_back(0);
1017 code_buffer_.push_back(0);
1018
1019 DCHECK_LT(reg, 8);
1020 code_buffer_.push_back(0x58 + reg); // pop reg
1021
1022 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1023}
1024
1025void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1026 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1027 << BuildInsnString(entry->fmt, lir, 0);
1028 for (int i = 0; i < GetInsnSize(lir); ++i) {
1029 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1030 }
1031}
1032
1033/*
1034 * Assemble the LIR into binary instruction format. Note that we may
1035 * discover that pc-relative displacements may not fit the selected
1036 * instruction. In those cases we will try to substitute a new code
1037 * sequence or request that the trace be shortened and retried.
1038 */
buzbee0d829482013-10-11 15:24:55 -07001039AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001040 LIR *lir;
1041 AssemblerStatus res = kSuccess; // Assume success
1042
1043 const bool kVerbosePcFixup = false;
1044 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001045 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001046 continue;
1047 }
1048
1049 if (lir->flags.is_nop) {
1050 continue;
1051 }
1052
buzbeeb48819d2013-09-14 16:15:25 -07001053 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001054 switch (lir->opcode) {
1055 case kX86Jcc8: {
1056 LIR *target_lir = lir->target;
1057 DCHECK(target_lir != NULL);
1058 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001059 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001060 if (IS_SIMM8(lir->operands[0])) {
1061 pc = lir->offset + 2 /* opcode + rel8 */;
1062 } else {
1063 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1064 }
buzbee0d829482013-10-11 15:24:55 -07001065 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001066 delta = target - pc;
1067 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1068 if (kVerbosePcFixup) {
1069 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1070 << " delta: " << delta << " old delta: " << lir->operands[0];
1071 }
1072 lir->opcode = kX86Jcc32;
1073 SetupResourceMasks(lir);
1074 res = kRetryAll;
1075 }
1076 if (kVerbosePcFixup) {
1077 LOG(INFO) << "Source:";
1078 DumpLIRInsn(lir, 0);
1079 LOG(INFO) << "Target:";
1080 DumpLIRInsn(target_lir, 0);
1081 LOG(INFO) << "Delta " << delta;
1082 }
1083 lir->operands[0] = delta;
1084 break;
1085 }
1086 case kX86Jcc32: {
1087 LIR *target_lir = lir->target;
1088 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001089 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1090 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001091 int delta = target - pc;
1092 if (kVerbosePcFixup) {
1093 LOG(INFO) << "Source:";
1094 DumpLIRInsn(lir, 0);
1095 LOG(INFO) << "Target:";
1096 DumpLIRInsn(target_lir, 0);
1097 LOG(INFO) << "Delta " << delta;
1098 }
1099 lir->operands[0] = delta;
1100 break;
1101 }
1102 case kX86Jmp8: {
1103 LIR *target_lir = lir->target;
1104 DCHECK(target_lir != NULL);
1105 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001106 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001107 if (IS_SIMM8(lir->operands[0])) {
1108 pc = lir->offset + 2 /* opcode + rel8 */;
1109 } else {
1110 pc = lir->offset + 5 /* opcode + rel32 */;
1111 }
buzbee0d829482013-10-11 15:24:55 -07001112 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001113 delta = target - pc;
1114 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1115 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001116 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001117 if (kVerbosePcFixup) {
1118 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1119 }
1120 res = kRetryAll;
1121 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1122 if (kVerbosePcFixup) {
1123 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1124 }
1125 lir->opcode = kX86Jmp32;
1126 SetupResourceMasks(lir);
1127 res = kRetryAll;
1128 }
1129 lir->operands[0] = delta;
1130 break;
1131 }
1132 case kX86Jmp32: {
1133 LIR *target_lir = lir->target;
1134 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001135 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1136 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001137 int delta = target - pc;
1138 lir->operands[0] = delta;
1139 break;
1140 }
1141 default:
1142 break;
1143 }
1144 }
1145
1146 /*
1147 * If one of the pc-relative instructions expanded we'll have
1148 * to make another pass. Don't bother to fully assemble the
1149 * instruction.
1150 */
1151 if (res != kSuccess) {
1152 continue;
1153 }
1154 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1155 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1156 size_t starting_cbuf_size = code_buffer_.size();
1157 switch (entry->kind) {
1158 case kData: // 4 bytes of data
1159 code_buffer_.push_back(lir->operands[0]);
1160 break;
1161 case kNullary: // 1 byte of opcode
1162 DCHECK_EQ(0, entry->skeleton.prefix1);
1163 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001164 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001165 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1166 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1167 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1168 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001169 case kRegOpcode: // lir operands - 0: reg
1170 EmitOpRegOpcode(entry, lir->operands[0]);
1171 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001172 case kReg: // lir operands - 0: reg
1173 EmitOpReg(entry, lir->operands[0]);
1174 break;
1175 case kMem: // lir operands - 0: base, 1: disp
1176 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1177 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001178 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1179 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1180 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001181 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1182 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1183 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001184 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1185 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1186 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001187 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1188 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1189 lir->operands[3], lir->operands[4]);
1190 break;
1191 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1192 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1193 break;
1194 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1195 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1196 lir->operands[3], lir->operands[4]);
1197 break;
1198 case kRegThread: // lir operands - 0: reg, 1: disp
1199 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1200 break;
1201 case kRegReg: // lir operands - 0: reg1, 1: reg2
1202 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1203 break;
1204 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1205 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1206 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001207 case kRegRegImmRev:
1208 EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1209 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001210 case kRegRegImm:
1211 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1212 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001213 case kRegMemImm:
1214 EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1215 lir->operands[3]);
1216 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001217 case kRegImm: // lir operands - 0: reg, 1: immediate
1218 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1219 break;
1220 case kThreadImm: // lir operands - 0: disp, 1: immediate
1221 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1222 break;
1223 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1224 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1225 break;
1226 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1227 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1228 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001229 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001230 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1231 break;
1232 case kRegCond: // lir operands - 0: reg, 1: condition
1233 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1234 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001235 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1236 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1237 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001238 case kJmp: // lir operands - 0: rel
1239 EmitJmp(entry, lir->operands[0]);
1240 break;
1241 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1242 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1243 break;
1244 case kCall:
1245 switch (entry->opcode) {
1246 case kX86CallM: // lir operands - 0: base, 1: disp
1247 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1248 break;
1249 case kX86CallT: // lir operands - 0: disp
1250 EmitCallThread(entry, lir->operands[0]);
1251 break;
1252 default:
1253 EmitUnimplemented(entry, lir);
1254 break;
1255 }
1256 break;
1257 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1258 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1259 lir->operands[3], lir->operands[4]);
1260 break;
1261 case kMacro:
1262 EmitMacro(entry, lir->operands[0], lir->offset);
1263 break;
1264 default:
1265 EmitUnimplemented(entry, lir);
1266 break;
1267 }
1268 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1269 code_buffer_.size() - starting_cbuf_size)
1270 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1271 }
1272 return res;
1273}
1274
buzbeeb48819d2013-09-14 16:15:25 -07001275// LIR offset assignment.
1276// TODO: consolidate w/ Arm assembly mechanism.
1277int X86Mir2Lir::AssignInsnOffsets() {
1278 LIR* lir;
1279 int offset = 0;
1280
1281 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1282 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001283 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001284 if (!lir->flags.is_nop) {
1285 offset += lir->flags.size;
1286 }
1287 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1288 if (offset & 0x2) {
1289 offset += 2;
1290 lir->operands[0] = 1;
1291 } else {
1292 lir->operands[0] = 0;
1293 }
1294 }
1295 /* Pseudo opcodes don't consume space */
1296 }
1297 return offset;
1298}
1299
1300/*
1301 * Walk the compilation unit and assign offsets to instructions
1302 * and literals and compute the total size of the compiled unit.
1303 * TODO: consolidate w/ Arm assembly mechanism.
1304 */
1305void X86Mir2Lir::AssignOffsets() {
1306 int offset = AssignInsnOffsets();
1307
1308 /* Const values have to be word aligned */
1309 offset = (offset + 3) & ~3;
1310
1311 /* Set up offsets for literals */
1312 data_offset_ = offset;
1313
1314 offset = AssignLiteralOffset(offset);
1315
1316 offset = AssignSwitchTablesOffset(offset);
1317
1318 offset = AssignFillArrayDataOffset(offset);
1319
1320 total_size_ = offset;
1321}
1322
1323/*
1324 * Go over each instruction in the list and calculate the offset from the top
1325 * before sending them off to the assembler. If out-of-range branch distance is
1326 * seen rearrange the instructions a bit to correct it.
1327 * TODO: consolidate w/ Arm assembly mechanism.
1328 */
1329void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001330 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001331 AssignOffsets();
1332 int assembler_retries = 0;
1333 /*
1334 * Assemble here. Note that we generate code with optimistic assumptions
1335 * and if found now to work, we'll have to redo the sequence and retry.
1336 */
1337
1338 while (true) {
1339 AssemblerStatus res = AssembleInstructions(0);
1340 if (res == kSuccess) {
1341 break;
1342 } else {
1343 assembler_retries++;
1344 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1345 CodegenDump();
1346 LOG(FATAL) << "Assembler error - too many retries";
1347 }
1348 // Redo offsets and try again
1349 AssignOffsets();
1350 code_buffer_.clear();
1351 }
1352 }
1353
1354 // Install literals
1355 InstallLiteralPools();
1356
1357 // Install switch tables
1358 InstallSwitchTables();
1359
1360 // Install fill array data
1361 InstallFillArrayData();
1362
1363 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001364 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001365 CreateMappingTables();
1366
buzbeea61f4952013-08-23 14:27:06 -07001367 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001368 CreateNativeGcMap();
1369}
1370
Brian Carlstrom7940e442013-07-12 13:46:57 -07001371} // namespace art