blob: dcbaad96327e55b235fff30029b67f79325f2dce [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
Vladimir Markoa1a70742014-03-03 10:28:05 +0000193 ConditionCode ccode = mir->meta.ccode;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800194
195 // The kMirOpSelect has two variants, one for constants and one for moves.
196 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
197
198 if (is_constant_case) {
199 int true_val = mir->dalvikInsn.vB;
200 int false_val = mir->dalvikInsn.vC;
201 rl_result = EvalLoc(rl_dest, kCoreReg, true);
202
203 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000204 * For ccode == kCondEq:
205 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800206 * 1) When the true case is zero and result_reg is not same as src_reg:
207 * xor result_reg, result_reg
208 * cmp $0, src_reg
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 * 2) When the false case is zero and result_reg is not same as src_reg:
212 * xor result_reg, result_reg
213 * cmp $0, src_reg
214 * mov t1, $true_case
215 * cmovz result_reg, t1
216 * 3) All other cases (we do compare first to set eflags):
217 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000218 * mov result_reg, $false_case
219 * mov t1, $true_case
220 * cmovz result_reg, t1
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800221 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000222 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800223 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
224 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
225 const bool catch_all_case = !(true_zero_case || false_zero_case);
226
227 if (true_zero_case || false_zero_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000228 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800229 }
230
231 if (true_zero_case || false_zero_case || catch_all_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000232 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800233 }
234
235 if (catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000236 OpRegImm(kOpMov, rl_result.reg.GetReg(), false_val);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800237 }
238
239 if (true_zero_case || false_zero_case || catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000240 ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
241 int immediateForTemp = true_zero_case ? false_val : true_val;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800242 int temp1_reg = AllocTemp();
243 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
244
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000245 OpCondRegReg(kOpCmov, cc, rl_result.reg.GetReg(), temp1_reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800246
247 FreeTemp(temp1_reg);
248 }
249 } else {
250 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
251 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
252 rl_true = LoadValue(rl_true, kCoreReg);
253 rl_false = LoadValue(rl_false, kCoreReg);
254 rl_result = EvalLoc(rl_dest, kCoreReg, true);
255
256 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000257 * For ccode == kCondEq:
258 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800259 * 1) When true case is already in place:
260 * cmp $0, src_reg
261 * cmovnz result_reg, false_reg
262 * 2) When false case is already in place:
263 * cmp $0, src_reg
264 * cmovz result_reg, true_reg
265 * 3) When neither cases are in place:
266 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000267 * mov result_reg, false_reg
268 * cmovz result_reg, true_reg
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800269 */
270
271 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000272 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800273
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000274 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000275 OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg.GetReg(), rl_false.reg.GetReg());
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000276 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000277 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800278 } else {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000279 OpRegCopy(rl_result.reg.GetReg(), rl_false.reg.GetReg());
280 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800281 }
282 }
283
284 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700285}
286
287void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700288 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700289 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
290 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000291 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800292
293 if (rl_src1.is_const) {
294 std::swap(rl_src1, rl_src2);
295 ccode = FlipComparisonOrder(ccode);
296 }
297 if (rl_src2.is_const) {
298 // Do special compare/branch against simple const operand
299 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
300 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
301 return;
302 }
303
Brian Carlstrom7940e442013-07-12 13:46:57 -0700304 FlushAllRegs();
305 LockCallTemps(); // Prepare for explicit register usage
306 LoadValueDirectWideFixed(rl_src1, r0, r1);
307 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700308 // Swap operands and condition code to prevent use of zero flag.
309 if (ccode == kCondLe || ccode == kCondGt) {
310 // Compute (r3:r2) = (r3:r2) - (r1:r0)
311 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
312 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
313 } else {
314 // Compute (r1:r0) = (r1:r0) - (r3:r2)
315 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
316 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
317 }
318 switch (ccode) {
319 case kCondEq:
320 case kCondNe:
321 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
322 break;
323 case kCondLe:
324 ccode = kCondGe;
325 break;
326 case kCondGt:
327 ccode = kCondLt;
328 break;
329 case kCondLt:
330 case kCondGe:
331 break;
332 default:
333 LOG(FATAL) << "Unexpected ccode: " << ccode;
334 }
335 OpCondBranch(ccode, taken);
336}
337
Mark Mendell412d4f82013-12-18 13:32:36 -0800338void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
339 int64_t val, ConditionCode ccode) {
340 int32_t val_lo = Low32Bits(val);
341 int32_t val_hi = High32Bits(val);
342 LIR* taken = &block_label_list_[bb->taken];
343 LIR* not_taken = &block_label_list_[bb->fall_through];
344 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000345 int32_t low_reg = rl_src1.reg.GetReg();
346 int32_t high_reg = rl_src1.reg.GetHighReg();
Mark Mendell412d4f82013-12-18 13:32:36 -0800347
348 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
349 int t_reg = AllocTemp();
350 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
351 FreeTemp(t_reg);
352 OpCondBranch(ccode, taken);
353 return;
354 }
355
356 OpRegImm(kOpCmp, high_reg, val_hi);
357 switch (ccode) {
358 case kCondEq:
359 case kCondNe:
360 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
361 break;
362 case kCondLt:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondUlt;
366 break;
367 case kCondLe:
368 OpCondBranch(kCondLt, taken);
369 OpCondBranch(kCondGt, not_taken);
370 ccode = kCondLs;
371 break;
372 case kCondGt:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondHi;
376 break;
377 case kCondGe:
378 OpCondBranch(kCondGt, taken);
379 OpCondBranch(kCondLt, not_taken);
380 ccode = kCondUge;
381 break;
382 default:
383 LOG(FATAL) << "Unexpected ccode: " << ccode;
384 }
385 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
386}
387
Mark Mendell2bf31e62014-01-23 12:13:40 -0800388void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
389 // It does not make sense to calculate magic and shift for zero divisor.
390 DCHECK_NE(divisor, 0);
391
392 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
393 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
394 * The magic number M and shift S can be calculated in the following way:
395 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
396 * where divisor(d) >=2.
397 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
398 * where divisor(d) <= -2.
399 * Thus nc can be calculated like:
400 * nc = 2^31 + 2^31 % d - 1, where d >= 2
401 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
402 *
403 * So the shift p is the smallest p satisfying
404 * 2^p > nc * (d - 2^p % d), where d >= 2
405 * 2^p > nc * (d + 2^p % d), where d <= -2.
406 *
407 * the magic number M is calcuated by
408 * M = (2^p + d - 2^p % d) / d, where d >= 2
409 * M = (2^p - d - 2^p % d) / d, where d <= -2.
410 *
411 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
412 * the shift number S.
413 */
414
415 int32_t p = 31;
416 const uint32_t two31 = 0x80000000U;
417
418 // Initialize the computations.
419 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
420 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
421 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
422 uint32_t quotient1 = two31 / abs_nc;
423 uint32_t remainder1 = two31 % abs_nc;
424 uint32_t quotient2 = two31 / abs_d;
425 uint32_t remainder2 = two31 % abs_d;
426
427 /*
428 * To avoid handling both positive and negative divisor, Hacker's Delight
429 * introduces a method to handle these 2 cases together to avoid duplication.
430 */
431 uint32_t delta;
432 do {
433 p++;
434 quotient1 = 2 * quotient1;
435 remainder1 = 2 * remainder1;
436 if (remainder1 >= abs_nc) {
437 quotient1++;
438 remainder1 = remainder1 - abs_nc;
439 }
440 quotient2 = 2 * quotient2;
441 remainder2 = 2 * remainder2;
442 if (remainder2 >= abs_d) {
443 quotient2++;
444 remainder2 = remainder2 - abs_d;
445 }
446 delta = abs_d - remainder2;
447 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
448
449 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
450 shift = p - 32;
451}
452
Brian Carlstrom7940e442013-07-12 13:46:57 -0700453RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700454 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700455 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
456 return rl_dest;
457}
458
Mark Mendell2bf31e62014-01-23 12:13:40 -0800459RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
460 int imm, bool is_div) {
461 // Use a multiply (and fixup) to perform an int div/rem by a constant.
462
463 // We have to use fixed registers, so flush all the temps.
464 FlushAllRegs();
465 LockCallTemps(); // Prepare for explicit register usage.
466
467 // Assume that the result will be in EDX.
468 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000469 RegStorage(RegStorage::k32BitSolo, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800470
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700471 // handle div/rem by 1 special case.
472 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800473 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700474 // x / 1 == x.
475 StoreValue(rl_result, rl_src);
476 } else {
477 // x % 1 == 0.
478 LoadConstantNoClobber(r0, 0);
479 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000480 rl_result.reg.SetReg(r0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700481 }
482 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
483 if (is_div) {
484 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800485 LoadValueDirectFixed(rl_src, r0);
486 OpRegImm(kOpCmp, r0, 0x80000000);
487 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
488
489 // for x != MIN_INT, x / -1 == -x.
490 NewLIR1(kX86Neg32R, r0);
491
492 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
493 // The target for cmp/jmp above.
494 minint_branch->target = NewLIR0(kPseudoTargetLabel);
495 // EAX already contains the right value (0x80000000),
496 branch_around->target = NewLIR0(kPseudoTargetLabel);
497 } else {
498 // x % -1 == 0.
499 LoadConstantNoClobber(r0, 0);
500 }
501 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000502 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800503 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700504 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800505 // Use H.S.Warren's Hacker's Delight Chapter 10 and
506 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
507 int magic, shift;
508 CalculateMagicAndShift(imm, magic, shift);
509
510 /*
511 * For imm >= 2,
512 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
513 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
514 * For imm <= -2,
515 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
516 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
517 * We implement this algorithm in the following way:
518 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
519 * 2. if imm > 0 and magic < 0, add numerator to EDX
520 * if imm < 0 and magic > 0, sub numerator from EDX
521 * 3. if S !=0, SAR S bits for EDX
522 * 4. add 1 to EDX if EDX < 0
523 * 5. Thus, EDX is the quotient
524 */
525
526 // Numerator into EAX.
527 int numerator_reg = -1;
528 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
529 // We will need the value later.
530 if (rl_src.location == kLocPhysReg) {
531 // We can use it directly.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000532 DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
533 numerator_reg = rl_src.reg.GetReg();
Mark Mendell2bf31e62014-01-23 12:13:40 -0800534 } else {
535 LoadValueDirectFixed(rl_src, r1);
536 numerator_reg = r1;
537 }
538 OpRegCopy(r0, numerator_reg);
539 } else {
540 // Only need this once. Just put it into EAX.
541 LoadValueDirectFixed(rl_src, r0);
542 }
543
544 // EDX = magic.
545 LoadConstantNoClobber(r2, magic);
546
547 // EDX:EAX = magic & dividend.
548 NewLIR1(kX86Imul32DaR, r2);
549
550 if (imm > 0 && magic < 0) {
551 // Add numerator to EDX.
552 DCHECK_NE(numerator_reg, -1);
553 NewLIR2(kX86Add32RR, r2, numerator_reg);
554 } else if (imm < 0 && magic > 0) {
555 DCHECK_NE(numerator_reg, -1);
556 NewLIR2(kX86Sub32RR, r2, numerator_reg);
557 }
558
559 // Do we need the shift?
560 if (shift != 0) {
561 // Shift EDX by 'shift' bits.
562 NewLIR2(kX86Sar32RI, r2, shift);
563 }
564
565 // Add 1 to EDX if EDX < 0.
566
567 // Move EDX to EAX.
568 OpRegCopy(r0, r2);
569
570 // Move sign bit to bit 0, zeroing the rest.
571 NewLIR2(kX86Shr32RI, r2, 31);
572
573 // EDX = EDX + EAX.
574 NewLIR2(kX86Add32RR, r2, r0);
575
576 // Quotient is in EDX.
577 if (!is_div) {
578 // We need to compute the remainder.
579 // Remainder is divisor - (quotient * imm).
580 DCHECK_NE(numerator_reg, -1);
581 OpRegCopy(r0, numerator_reg);
582
583 // EAX = numerator * imm.
584 OpRegRegImm(kOpMul, r2, r2, imm);
585
586 // EDX -= EAX.
587 NewLIR2(kX86Sub32RR, r0, r2);
588
589 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000590 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800591 }
592 }
593
594 return rl_result;
595}
596
Brian Carlstrom7940e442013-07-12 13:46:57 -0700597RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700598 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700599 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
600 return rl_dest;
601}
602
Mark Mendell2bf31e62014-01-23 12:13:40 -0800603RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
604 RegLocation rl_src2, bool is_div, bool check_zero) {
605 // We have to use fixed registers, so flush all the temps.
606 FlushAllRegs();
607 LockCallTemps(); // Prepare for explicit register usage.
608
609 // Load LHS into EAX.
610 LoadValueDirectFixed(rl_src1, r0);
611
612 // Load RHS into EBX.
613 LoadValueDirectFixed(rl_src2, r1);
614
615 // Copy LHS sign bit into EDX.
616 NewLIR0(kx86Cdq32Da);
617
618 if (check_zero) {
619 // Handle division by zero case.
620 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
621 }
622
623 // Have to catch 0x80000000/-1 case, or we will get an exception!
624 OpRegImm(kOpCmp, r1, -1);
625 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
626
627 // RHS is -1.
628 OpRegImm(kOpCmp, r0, 0x80000000);
629 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
630
631 // In 0x80000000/-1 case.
632 if (!is_div) {
633 // For DIV, EAX is already right. For REM, we need EDX 0.
634 LoadConstantNoClobber(r2, 0);
635 }
636 LIR* done = NewLIR1(kX86Jmp8, 0);
637
638 // Expected case.
639 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
640 minint_branch->target = minus_one_branch->target;
641 NewLIR1(kX86Idivmod32DaR, r1);
642 done->target = NewLIR0(kPseudoTargetLabel);
643
644 // Result is in EAX for div and EDX for rem.
645 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000646 RegStorage(RegStorage::k32BitSolo, r0), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800647 if (!is_div) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000648 rl_result.reg.SetReg(r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800649 }
650 return rl_result;
651}
652
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700653bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700654 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800655
656 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700657 RegLocation rl_src1 = info->args[0];
658 RegLocation rl_src2 = info->args[1];
659 rl_src1 = LoadValue(rl_src1, kCoreReg);
660 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800661
Brian Carlstrom7940e442013-07-12 13:46:57 -0700662 RegLocation rl_dest = InlineTarget(info);
663 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800664
665 /*
666 * If the result register is the same as the second element, then we need to be careful.
667 * The reason is that the first copy will inadvertently clobber the second element with
668 * the first one thus yielding the wrong result. Thus we do a swap in that case.
669 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000670 if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800671 std::swap(rl_src1, rl_src2);
672 }
673
674 // Pick the first integer as min/max.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000675 OpRegCopy(rl_result.reg.GetReg(), rl_src1.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800676
677 // If the integers are both in the same register, then there is nothing else to do
678 // because they are equal and we have already moved one into the result.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000679 if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800680 // It is possible we didn't pick correctly so do the actual comparison now.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000681 OpRegReg(kOpCmp, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800682
683 // Conditionally move the other integer into the destination register.
684 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000685 OpCondRegReg(kOpCmov, condition_code, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800686 }
687
Brian Carlstrom7940e442013-07-12 13:46:57 -0700688 StoreValue(rl_dest, rl_result);
689 return true;
690}
691
Vladimir Markoe508a202013-11-04 15:24:22 +0000692bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
693 RegLocation rl_src_address = info->args[0]; // long address
694 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800695 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000696 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
697 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
698 if (size == kLong) {
699 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000700 LoadBaseDispWide(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000701 StoreValueWide(rl_dest, rl_result);
702 } else {
703 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
704 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000705 LoadBaseDisp(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), size, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000706 StoreValue(rl_dest, rl_result);
707 }
708 return true;
709}
710
711bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
712 RegLocation rl_src_address = info->args[0]; // long address
713 rl_src_address.wide = 0; // ignore high half in info->args[1]
714 RegLocation rl_src_value = info->args[2]; // [size] value
715 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
716 if (size == kLong) {
717 // Unaligned access is allowed on x86.
718 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000719 StoreBaseDispWide(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
Vladimir Markoe508a202013-11-04 15:24:22 +0000720 } else {
721 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
722 // Unaligned access is allowed on x86.
723 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000724 StoreBaseDisp(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), size);
Vladimir Markoe508a202013-11-04 15:24:22 +0000725 }
726 return true;
727}
728
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700729void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700730 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
731}
732
Ian Rogers468532e2013-08-05 10:56:33 -0700733void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
734 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700735}
736
Vladimir Marko1c282e22013-11-21 14:49:47 +0000737bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000738 DCHECK_EQ(cu_->instruction_set, kX86);
739 // Unused - RegLocation rl_src_unsafe = info->args[0];
740 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
741 RegLocation rl_src_offset = info->args[2]; // long low
742 rl_src_offset.wide = 0; // ignore high half in info->args[3]
743 RegLocation rl_src_expected = info->args[4]; // int, long or Object
744 // If is_long, high half is in info->args[5]
745 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
746 // If is_long, high half is in info->args[7]
747
748 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000749 FlushAllRegs();
750 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000751 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
752 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000753 NewLIR1(kX86Push32R, rDI);
754 MarkTemp(rDI);
755 LockTemp(rDI);
756 NewLIR1(kX86Push32R, rSI);
757 MarkTemp(rSI);
758 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000759 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
760 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
761 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000762 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
763 FreeTemp(rSI);
764 UnmarkTemp(rSI);
765 NewLIR1(kX86Pop32R, rSI);
766 FreeTemp(rDI);
767 UnmarkTemp(rDI);
768 NewLIR1(kX86Pop32R, rDI);
769 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000770 } else {
771 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
772 FlushReg(r0);
773 LockTemp(r0);
774
775 // Release store semantics, get the barrier out of the way. TODO: revisit
776 GenMemBarrier(kStoreLoad);
777
778 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
779 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
780
781 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
782 // Mark card for object assuming new value is stored.
783 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000784 MarkGCCard(rl_new_value.reg.GetReg(), rl_object.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000785 LockTemp(r0);
786 }
787
788 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
789 LoadValueDirect(rl_src_expected, r0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000790 NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000791
792 FreeTemp(r0);
793 }
794
795 // Convert ZF to boolean
796 RegLocation rl_dest = InlineTarget(info); // boolean place for result
797 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000798 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
799 NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000800 StoreValue(rl_dest, rl_result);
801 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700802}
803
804LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800805 CHECK(base_of_code_ != nullptr);
806
807 // Address the start of the method
808 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
809 LoadValueDirectFixed(rl_method, reg);
810 store_method_addr_used_ = true;
811
812 // Load the proper value from the literal area.
813 // We don't know the proper offset for the value, so pick one that will force
814 // 4 byte offset. We will fix this up in the assembler later to have the right
815 // value.
816 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
817 res->target = target;
818 res->flags.fixup = kFixupLoad;
819 SetMemRefType(res, true, kLiteral);
820 store_method_addr_used_ = true;
821 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700822}
823
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700824LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700825 LOG(FATAL) << "Unexpected use of OpVldm for x86";
826 return NULL;
827}
828
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700829LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700830 LOG(FATAL) << "Unexpected use of OpVstm for x86";
831 return NULL;
832}
833
834void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
835 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700836 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 int t_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000838 OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), second_bit - first_bit);
839 OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), t_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700840 FreeTemp(t_reg);
841 if (first_bit != 0) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000842 OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_result.reg.GetReg(), first_bit);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700843 }
844}
845
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700846void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800847 // We are not supposed to clobber either of the provided registers, so allocate
848 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700849 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800850
851 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700852 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800853
854 // In case of zero, throw ArithmeticException.
855 GenCheck(kCondEq, kThrowDivZero);
856
857 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700858 FreeTemp(t_reg);
859}
860
861// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700862LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700863 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700864 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
865}
866
867// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700868LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700869 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800870 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700871}
872
buzbee11b63d12013-08-27 07:34:17 -0700873bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700874 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700875 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
876 return false;
877}
878
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700879LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700880 LOG(FATAL) << "Unexpected use of OpIT in x86";
881 return NULL;
882}
883
Mark Mendell4708dcd2014-01-22 09:05:18 -0800884void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
885 switch (val) {
886 case 0:
887 NewLIR2(kX86Xor32RR, dest, dest);
888 break;
889 case 1:
890 OpRegCopy(dest, src);
891 break;
892 default:
893 OpRegRegImm(kOpMul, dest, src, val);
894 break;
895 }
896}
897
898void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
899 LIR *m;
900 switch (val) {
901 case 0:
902 NewLIR2(kX86Xor32RR, dest, dest);
903 break;
904 case 1:
905 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
906 break;
907 default:
908 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
909 displacement, val);
910 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
911 break;
912 }
913}
914
Mark Mendelle02d48f2014-01-15 11:19:23 -0800915void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700916 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800917 if (rl_src1.is_const) {
918 std::swap(rl_src1, rl_src2);
919 }
920 // Are we multiplying by a constant?
921 if (rl_src2.is_const) {
922 // Do special compare/branch against simple const operand
923 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
924 if (val == 0) {
925 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000926 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
927 OpRegReg(kOpXor, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800928 StoreValueWide(rl_dest, rl_result);
929 return;
930 } else if (val == 1) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800931 StoreValueWide(rl_dest, rl_src1);
932 return;
933 } else if (val == 2) {
934 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
935 return;
936 } else if (IsPowerOfTwo(val)) {
937 int shift_amount = LowestSetBit(val);
938 if (!BadOverlap(rl_src1, rl_dest)) {
939 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
940 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
941 rl_src1, shift_amount);
942 StoreValueWide(rl_dest, rl_result);
943 return;
944 }
945 }
946
947 // Okay, just bite the bullet and do it.
948 int32_t val_lo = Low32Bits(val);
949 int32_t val_hi = High32Bits(val);
950 FlushAllRegs();
951 LockCallTemps(); // Prepare for explicit register usage.
952 rl_src1 = UpdateLocWide(rl_src1);
953 bool src1_in_reg = rl_src1.location == kLocPhysReg;
954 int displacement = SRegOffset(rl_src1.s_reg_low);
955
956 // ECX <- 1H * 2L
957 // EAX <- 1L * 2H
958 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000959 GenImulRegImm(r1, rl_src1.reg.GetHighReg(), val_lo);
960 GenImulRegImm(r0, rl_src1.reg.GetReg(), val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800961 } else {
962 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
963 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
964 }
965
966 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
967 NewLIR2(kX86Add32RR, r1, r0);
968
969 // EAX <- 2L
970 LoadConstantNoClobber(r0, val_lo);
971
972 // EDX:EAX <- 2L * 1L (double precision)
973 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000974 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800975 } else {
976 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
977 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
978 true /* is_load */, true /* is_64bit */);
979 }
980
981 // EDX <- EDX + ECX (add high words)
982 NewLIR2(kX86Add32RR, r2, r1);
983
984 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000985 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
986 RegStorage(RegStorage::k64BitPair, r0, r2),
Mark Mendell4708dcd2014-01-22 09:05:18 -0800987 INVALID_SREG, INVALID_SREG};
988 StoreValueWide(rl_dest, rl_result);
989 return;
990 }
991
992 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -0800993 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
994 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
995 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
996
Mark Mendell4708dcd2014-01-22 09:05:18 -0800997 FlushAllRegs();
998 LockCallTemps(); // Prepare for explicit register usage.
999 rl_src1 = UpdateLocWide(rl_src1);
1000 rl_src2 = UpdateLocWide(rl_src2);
1001
1002 // At this point, the VRs are in their home locations.
1003 bool src1_in_reg = rl_src1.location == kLocPhysReg;
1004 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1005
1006 // ECX <- 1H
1007 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001008 NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001009 } else {
1010 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1011 kWord, GetSRegHi(rl_src1.s_reg_low));
1012 }
1013
Mark Mendellde99bba2014-02-14 12:15:02 -08001014 if (is_square) {
1015 // Take advantage of the fact that the values are the same.
1016 // ECX <- ECX * 2L (1H * 2L)
1017 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001018 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001019 } else {
1020 int displacement = SRegOffset(rl_src2.s_reg_low);
1021 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1022 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1023 true /* is_load */, true /* is_64bit */);
1024 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001025
Mark Mendellde99bba2014-02-14 12:15:02 -08001026 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1027 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001028 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001029 // EAX <- 2H
1030 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001031 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001032 } else {
1033 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1034 kWord, GetSRegHi(rl_src2.s_reg_low));
1035 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001036
Mark Mendellde99bba2014-02-14 12:15:02 -08001037 // EAX <- EAX * 1L (2H * 1L)
1038 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001039 NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001040 } else {
1041 int displacement = SRegOffset(rl_src1.s_reg_low);
1042 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1043 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1044 true /* is_load */, true /* is_64bit */);
1045 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001046
Mark Mendellde99bba2014-02-14 12:15:02 -08001047 // ECX <- ECX * 2L (1H * 2L)
1048 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001049 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001050 } else {
1051 int displacement = SRegOffset(rl_src2.s_reg_low);
1052 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1053 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1054 true /* is_load */, true /* is_64bit */);
1055 }
1056
1057 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1058 NewLIR2(kX86Add32RR, r1, r0);
1059 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001060
1061 // EAX <- 2L
1062 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001063 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001064 } else {
1065 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1066 kWord, rl_src2.s_reg_low);
1067 }
1068
1069 // EDX:EAX <- 2L * 1L (double precision)
1070 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001071 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001072 } else {
1073 int displacement = SRegOffset(rl_src1.s_reg_low);
1074 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1075 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1076 true /* is_load */, true /* is_64bit */);
1077 }
1078
1079 // EDX <- EDX + ECX (add high words)
1080 NewLIR2(kX86Add32RR, r2, r1);
1081
1082 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001083 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1084 RegStorage(RegStorage::k64BitPair, r0, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell4708dcd2014-01-22 09:05:18 -08001085 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001086}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001087
1088void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1089 Instruction::Code op) {
1090 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1091 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1092 if (rl_src.location == kLocPhysReg) {
1093 // Both operands are in registers.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001094 if (rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001095 // The registers are the same, so we would clobber it before the use.
1096 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001097 OpRegCopy(temp_reg, rl_dest.reg.GetReg());
1098 rl_src.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001099 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001100 NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001101
1102 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001103 NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1104 FreeTemp(rl_src.reg.GetReg());
1105 FreeTemp(rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001106 return;
1107 }
1108
1109 // RHS is in memory.
1110 DCHECK((rl_src.location == kLocDalvikFrame) ||
1111 (rl_src.location == kLocCompilerTemp));
1112 int rBase = TargetReg(kSp);
1113 int displacement = SRegOffset(rl_src.s_reg_low);
1114
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001115 LIR *lir = NewLIR3(x86op, rl_dest.reg.GetReg(), rBase, displacement + LOWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001116 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1117 true /* is_load */, true /* is64bit */);
1118 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001119 lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), rBase, displacement + HIWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001120 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1121 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001122}
1123
Mark Mendelle02d48f2014-01-15 11:19:23 -08001124void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1125 rl_dest = UpdateLocWide(rl_dest);
1126 if (rl_dest.location == kLocPhysReg) {
1127 // Ensure we are in a register pair
1128 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1129
1130 rl_src = UpdateLocWide(rl_src);
1131 GenLongRegOrMemOp(rl_result, rl_src, op);
1132 StoreFinalValueWide(rl_dest, rl_result);
1133 return;
1134 }
1135
1136 // It wasn't in registers, so it better be in memory.
1137 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1138 (rl_dest.location == kLocCompilerTemp));
1139 rl_src = LoadValueWide(rl_src, kCoreReg);
1140
1141 // Operate directly into memory.
1142 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1143 int rBase = TargetReg(kSp);
1144 int displacement = SRegOffset(rl_dest.s_reg_low);
1145
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001146 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001147 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1148 false /* is_load */, true /* is64bit */);
1149 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001150 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001151 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1152 false /* is_load */, true /* is64bit */);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001153 FreeTemp(rl_src.reg.GetReg());
1154 FreeTemp(rl_src.reg.GetHighReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001155}
1156
Mark Mendelle02d48f2014-01-15 11:19:23 -08001157void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1158 RegLocation rl_src2, Instruction::Code op,
1159 bool is_commutative) {
1160 // Is this really a 2 operand operation?
1161 switch (op) {
1162 case Instruction::ADD_LONG_2ADDR:
1163 case Instruction::SUB_LONG_2ADDR:
1164 case Instruction::AND_LONG_2ADDR:
1165 case Instruction::OR_LONG_2ADDR:
1166 case Instruction::XOR_LONG_2ADDR:
1167 GenLongArith(rl_dest, rl_src2, op);
1168 return;
1169 default:
1170 break;
1171 }
1172
1173 if (rl_dest.location == kLocPhysReg) {
1174 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1175
1176 // We are about to clobber the LHS, so it needs to be a temp.
1177 rl_result = ForceTempWide(rl_result);
1178
1179 // Perform the operation using the RHS.
1180 rl_src2 = UpdateLocWide(rl_src2);
1181 GenLongRegOrMemOp(rl_result, rl_src2, op);
1182
1183 // And now record that the result is in the temp.
1184 StoreFinalValueWide(rl_dest, rl_result);
1185 return;
1186 }
1187
1188 // It wasn't in registers, so it better be in memory.
1189 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1190 (rl_dest.location == kLocCompilerTemp));
1191 rl_src1 = UpdateLocWide(rl_src1);
1192 rl_src2 = UpdateLocWide(rl_src2);
1193
1194 // Get one of the source operands into temporary register.
1195 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001196 if (IsTemp(rl_src1.reg.GetReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001197 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1198 } else if (is_commutative) {
1199 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1200 // We need at least one of them to be a temporary.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001201 if (!(IsTemp(rl_src2.reg.GetReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001202 rl_src1 = ForceTempWide(rl_src1);
Yevgeny Rouban91b6ffa2014-03-07 14:35:44 +07001203 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1204 } else {
1205 GenLongRegOrMemOp(rl_src2, rl_src1, op);
1206 StoreFinalValueWide(rl_dest, rl_src2);
1207 return;
Mark Mendelle02d48f2014-01-15 11:19:23 -08001208 }
Mark Mendelle02d48f2014-01-15 11:19:23 -08001209 } else {
1210 // Need LHS to be the temp.
1211 rl_src1 = ForceTempWide(rl_src1);
1212 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1213 }
1214
1215 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001216}
1217
Mark Mendelle02d48f2014-01-15 11:19:23 -08001218void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001219 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001220 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1221}
1222
1223void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1224 RegLocation rl_src1, RegLocation rl_src2) {
1225 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1226}
1227
1228void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1229 RegLocation rl_src1, RegLocation rl_src2) {
1230 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1231}
1232
1233void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1234 RegLocation rl_src1, RegLocation rl_src2) {
1235 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1236}
1237
1238void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1239 RegLocation rl_src1, RegLocation rl_src2) {
1240 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001241}
1242
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001243void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001244 rl_src = LoadValueWide(rl_src, kCoreReg);
1245 RegLocation rl_result = ForceTempWide(rl_src);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001246 if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1247 ((rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001248 // The registers are the same, so we would clobber it before the use.
1249 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001250 OpRegCopy(temp_reg, rl_result.reg.GetReg());
1251 rl_result.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001252 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001253 OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_result.reg.GetReg()); // rLow = -rLow
1254 OpRegImm(kOpAdc, rl_result.reg.GetHighReg(), 0); // rHigh = rHigh + CF
1255 OpRegReg(kOpNeg, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg()); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001256 StoreValueWide(rl_dest, rl_result);
1257}
1258
Ian Rogers468532e2013-08-05 10:56:33 -07001259void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001260 X86OpCode opcode = kX86Bkpt;
1261 switch (op) {
1262 case kOpCmp: opcode = kX86Cmp32RT; break;
1263 case kOpMov: opcode = kX86Mov32RT; break;
1264 default:
1265 LOG(FATAL) << "Bad opcode: " << op;
1266 break;
1267 }
Ian Rogers468532e2013-08-05 10:56:33 -07001268 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001269}
1270
1271/*
1272 * Generate array load
1273 */
1274void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001275 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001276 RegisterClass reg_class = oat_reg_class_by_size(size);
1277 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001278 RegLocation rl_result;
1279 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001280
Mark Mendell343adb52013-12-18 06:02:17 -08001281 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001282 if (size == kLong || size == kDouble) {
1283 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1284 } else {
1285 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1286 }
1287
Mark Mendell343adb52013-12-18 06:02:17 -08001288 bool constant_index = rl_index.is_const;
1289 int32_t constant_index_value = 0;
1290 if (!constant_index) {
1291 rl_index = LoadValue(rl_index, kCoreReg);
1292 } else {
1293 constant_index_value = mir_graph_->ConstantValue(rl_index);
1294 // If index is constant, just fold it into the data offset
1295 data_offset += constant_index_value << scale;
1296 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001297 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001298 }
1299
Brian Carlstrom7940e442013-07-12 13:46:57 -07001300 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001301 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001302
1303 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001304 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001305 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001306 constant_index_value, kThrowConstantArrayBounds);
1307 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001308 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001309 len_offset, kThrowArrayBounds);
1310 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001311 }
Mark Mendell343adb52013-12-18 06:02:17 -08001312 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001313 if ((size == kLong) || (size == kDouble)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001314 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_result.reg.GetReg(),
1315 rl_result.reg.GetHighReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001316 StoreValueWide(rl_dest, rl_result);
1317 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001318 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale,
1319 data_offset, rl_result.reg.GetReg(), INVALID_REG, size,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001320 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001321 StoreValue(rl_dest, rl_result);
1322 }
1323}
1324
1325/*
1326 * Generate array store
1327 *
1328 */
1329void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001330 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001331 RegisterClass reg_class = oat_reg_class_by_size(size);
1332 int len_offset = mirror::Array::LengthOffset().Int32Value();
1333 int data_offset;
1334
1335 if (size == kLong || size == kDouble) {
1336 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1337 } else {
1338 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1339 }
1340
1341 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001342 bool constant_index = rl_index.is_const;
1343 int32_t constant_index_value = 0;
1344 if (!constant_index) {
1345 rl_index = LoadValue(rl_index, kCoreReg);
1346 } else {
1347 // If index is constant, just fold it into the data offset
1348 constant_index_value = mir_graph_->ConstantValue(rl_index);
1349 data_offset += constant_index_value << scale;
1350 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001351 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001352 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001353
1354 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001355 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001356
1357 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001358 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001359 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001360 constant_index_value, kThrowConstantArrayBounds);
1361 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001362 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001363 len_offset, kThrowArrayBounds);
1364 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001365 }
1366 if ((size == kLong) || (size == kDouble)) {
1367 rl_src = LoadValueWide(rl_src, reg_class);
1368 } else {
1369 rl_src = LoadValue(rl_src, reg_class);
1370 }
1371 // If the src reg can't be byte accessed, move it to a temp first.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001372 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001373 int temp = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001374 OpRegCopy(temp, rl_src.reg.GetReg());
1375 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, temp,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001376 INVALID_REG, size, INVALID_SREG);
1377 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001378 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_src.reg.GetReg(),
1379 rl_src.wide ? rl_src.reg.GetHighReg() : INVALID_REG, size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001380 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001381 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001382 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001383 if (!constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001384 FreeTemp(rl_index.reg.GetReg());
Mark Mendell343adb52013-12-18 06:02:17 -08001385 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001386 MarkGCCard(rl_src.reg.GetReg(), rl_array.reg.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001387 }
1388}
1389
Mark Mendell4708dcd2014-01-22 09:05:18 -08001390RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1391 RegLocation rl_src, int shift_amount) {
1392 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1393 switch (opcode) {
1394 case Instruction::SHL_LONG:
1395 case Instruction::SHL_LONG_2ADDR:
1396 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1397 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001398 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1399 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001400 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001401 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1402 FreeTemp(rl_src.reg.GetHighReg());
1403 NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1404 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001405 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001406 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1407 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1408 NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), shift_amount);
1409 NewLIR2(kX86Sal32RI, rl_result.reg.GetReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001410 }
1411 break;
1412 case Instruction::SHR_LONG:
1413 case Instruction::SHR_LONG_2ADDR:
1414 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001415 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1416 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1417 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001418 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001419 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1420 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1421 NewLIR2(kX86Sar32RI, rl_result.reg.GetReg(), shift_amount - 32);
1422 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001423 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001424 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1425 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1426 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1427 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001428 }
1429 break;
1430 case Instruction::USHR_LONG:
1431 case Instruction::USHR_LONG_2ADDR:
1432 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001433 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1434 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001435 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001436 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1437 NewLIR2(kX86Shr32RI, rl_result.reg.GetReg(), shift_amount - 32);
1438 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001439 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001440 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1441 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1442 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1443 NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001444 }
1445 break;
1446 default:
1447 LOG(FATAL) << "Unexpected case";
1448 }
1449 return rl_result;
1450}
1451
Brian Carlstrom7940e442013-07-12 13:46:57 -07001452void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001453 RegLocation rl_src, RegLocation rl_shift) {
1454 // Per spec, we only care about low 6 bits of shift amount.
1455 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1456 if (shift_amount == 0) {
1457 rl_src = LoadValueWide(rl_src, kCoreReg);
1458 StoreValueWide(rl_dest, rl_src);
1459 return;
1460 } else if (shift_amount == 1 &&
1461 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1462 // Need to handle this here to avoid calling StoreValueWide twice.
1463 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1464 return;
1465 }
1466 if (BadOverlap(rl_src, rl_dest)) {
1467 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1468 return;
1469 }
1470 rl_src = LoadValueWide(rl_src, kCoreReg);
1471 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1472 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001473}
1474
1475void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001476 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001477 switch (opcode) {
1478 case Instruction::ADD_LONG:
1479 case Instruction::AND_LONG:
1480 case Instruction::OR_LONG:
1481 case Instruction::XOR_LONG:
1482 if (rl_src2.is_const) {
1483 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1484 } else {
1485 DCHECK(rl_src1.is_const);
1486 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1487 }
1488 break;
1489 case Instruction::SUB_LONG:
1490 case Instruction::SUB_LONG_2ADDR:
1491 if (rl_src2.is_const) {
1492 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1493 } else {
1494 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1495 }
1496 break;
1497 case Instruction::ADD_LONG_2ADDR:
1498 case Instruction::OR_LONG_2ADDR:
1499 case Instruction::XOR_LONG_2ADDR:
1500 case Instruction::AND_LONG_2ADDR:
1501 if (rl_src2.is_const) {
1502 GenLongImm(rl_dest, rl_src2, opcode);
1503 } else {
1504 DCHECK(rl_src1.is_const);
1505 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1506 }
1507 break;
1508 default:
1509 // Default - bail to non-const handler.
1510 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1511 break;
1512 }
1513}
1514
1515bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1516 switch (op) {
1517 case Instruction::AND_LONG_2ADDR:
1518 case Instruction::AND_LONG:
1519 return value == -1;
1520 case Instruction::OR_LONG:
1521 case Instruction::OR_LONG_2ADDR:
1522 case Instruction::XOR_LONG:
1523 case Instruction::XOR_LONG_2ADDR:
1524 return value == 0;
1525 default:
1526 return false;
1527 }
1528}
1529
1530X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1531 bool is_high_op) {
1532 bool rhs_in_mem = rhs.location != kLocPhysReg;
1533 bool dest_in_mem = dest.location != kLocPhysReg;
1534 DCHECK(!rhs_in_mem || !dest_in_mem);
1535 switch (op) {
1536 case Instruction::ADD_LONG:
1537 case Instruction::ADD_LONG_2ADDR:
1538 if (dest_in_mem) {
1539 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1540 } else if (rhs_in_mem) {
1541 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1542 }
1543 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1544 case Instruction::SUB_LONG:
1545 case Instruction::SUB_LONG_2ADDR:
1546 if (dest_in_mem) {
1547 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1548 } else if (rhs_in_mem) {
1549 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1550 }
1551 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1552 case Instruction::AND_LONG_2ADDR:
1553 case Instruction::AND_LONG:
1554 if (dest_in_mem) {
1555 return kX86And32MR;
1556 }
1557 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1558 case Instruction::OR_LONG:
1559 case Instruction::OR_LONG_2ADDR:
1560 if (dest_in_mem) {
1561 return kX86Or32MR;
1562 }
1563 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1564 case Instruction::XOR_LONG:
1565 case Instruction::XOR_LONG_2ADDR:
1566 if (dest_in_mem) {
1567 return kX86Xor32MR;
1568 }
1569 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1570 default:
1571 LOG(FATAL) << "Unexpected opcode: " << op;
1572 return kX86Add32RR;
1573 }
1574}
1575
1576X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1577 int32_t value) {
1578 bool in_mem = loc.location != kLocPhysReg;
1579 bool byte_imm = IS_SIMM8(value);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001580 DCHECK(in_mem || !IsFpReg(loc.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001581 switch (op) {
1582 case Instruction::ADD_LONG:
1583 case Instruction::ADD_LONG_2ADDR:
1584 if (byte_imm) {
1585 if (in_mem) {
1586 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1587 }
1588 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1589 }
1590 if (in_mem) {
1591 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1592 }
1593 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1594 case Instruction::SUB_LONG:
1595 case Instruction::SUB_LONG_2ADDR:
1596 if (byte_imm) {
1597 if (in_mem) {
1598 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1599 }
1600 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1601 }
1602 if (in_mem) {
1603 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1604 }
1605 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1606 case Instruction::AND_LONG_2ADDR:
1607 case Instruction::AND_LONG:
1608 if (byte_imm) {
1609 return in_mem ? kX86And32MI8 : kX86And32RI8;
1610 }
1611 return in_mem ? kX86And32MI : kX86And32RI;
1612 case Instruction::OR_LONG:
1613 case Instruction::OR_LONG_2ADDR:
1614 if (byte_imm) {
1615 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1616 }
1617 return in_mem ? kX86Or32MI : kX86Or32RI;
1618 case Instruction::XOR_LONG:
1619 case Instruction::XOR_LONG_2ADDR:
1620 if (byte_imm) {
1621 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1622 }
1623 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1624 default:
1625 LOG(FATAL) << "Unexpected opcode: " << op;
1626 return kX86Add32MI;
1627 }
1628}
1629
1630void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1631 DCHECK(rl_src.is_const);
1632 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1633 int32_t val_lo = Low32Bits(val);
1634 int32_t val_hi = High32Bits(val);
1635 rl_dest = UpdateLocWide(rl_dest);
1636
1637 // Can we just do this into memory?
1638 if ((rl_dest.location == kLocDalvikFrame) ||
1639 (rl_dest.location == kLocCompilerTemp)) {
1640 int rBase = TargetReg(kSp);
1641 int displacement = SRegOffset(rl_dest.s_reg_low);
1642
1643 if (!IsNoOp(op, val_lo)) {
1644 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1645 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1646 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1647 false /* is_load */, true /* is64bit */);
1648 }
1649 if (!IsNoOp(op, val_hi)) {
1650 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1651 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1652 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1653 false /* is_load */, true /* is64bit */);
1654 }
1655 return;
1656 }
1657
1658 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1659 DCHECK_EQ(rl_result.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001660 DCHECK(!IsFpReg(rl_result.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001661
1662 if (!IsNoOp(op, val_lo)) {
1663 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001664 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001665 }
1666 if (!IsNoOp(op, val_hi)) {
1667 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001668 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001669 }
1670 StoreValueWide(rl_dest, rl_result);
1671}
1672
1673void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1674 RegLocation rl_src2, Instruction::Code op) {
1675 DCHECK(rl_src2.is_const);
1676 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1677 int32_t val_lo = Low32Bits(val);
1678 int32_t val_hi = High32Bits(val);
1679 rl_dest = UpdateLocWide(rl_dest);
1680 rl_src1 = UpdateLocWide(rl_src1);
1681
1682 // Can we do this directly into the destination registers?
1683 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001684 rl_dest.reg.GetReg() == rl_src1.reg.GetReg() && rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1685 !IsFpReg(rl_dest.reg.GetReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001686 if (!IsNoOp(op, val_lo)) {
1687 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001688 NewLIR2(x86op, rl_dest.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001689 }
1690 if (!IsNoOp(op, val_hi)) {
1691 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001692 NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001693 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001694
1695 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001696 return;
1697 }
1698
1699 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1700 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1701
1702 // We need the values to be in a temporary
1703 RegLocation rl_result = ForceTempWide(rl_src1);
1704 if (!IsNoOp(op, val_lo)) {
1705 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001706 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001707 }
1708 if (!IsNoOp(op, val_hi)) {
1709 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001710 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001711 }
1712
1713 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001714}
1715
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001716// For final classes there are no sub-classes to check and so we can answer the instance-of
1717// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1718void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1719 RegLocation rl_dest, RegLocation rl_src) {
1720 RegLocation object = LoadValue(rl_src, kCoreReg);
1721 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001722 int result_reg = rl_result.reg.GetReg();
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001723
1724 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001725 if (result_reg == object.reg.GetReg() || result_reg >= 4) {
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001726 result_reg = AllocTypedTemp(false, kCoreReg);
1727 DCHECK_LT(result_reg, 4);
1728 }
1729
1730 // Assume that there is no match.
1731 LoadConstant(result_reg, 0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001732 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001733
1734 int check_class = AllocTypedTemp(false, kCoreReg);
1735
1736 // If Method* is already in a register, we can save a copy.
1737 RegLocation rl_method = mir_graph_->GetMethodLoc();
1738 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1739 (sizeof(mirror::Class*) * type_idx);
1740
1741 if (rl_method.location == kLocPhysReg) {
1742 if (use_declaring_class) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001743 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001744 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1745 check_class);
1746 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001747 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001748 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1749 check_class);
1750 LoadWordDisp(check_class, offset_of_type, check_class);
1751 }
1752 } else {
1753 LoadCurrMethodDirect(check_class);
1754 if (use_declaring_class) {
1755 LoadWordDisp(check_class,
1756 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1757 check_class);
1758 } else {
1759 LoadWordDisp(check_class,
1760 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1761 check_class);
1762 LoadWordDisp(check_class, offset_of_type, check_class);
1763 }
1764 }
1765
1766 // Compare the computed class to the class in the object.
1767 DCHECK_EQ(object.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001768 OpRegMem(kOpCmp, check_class, object.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001769 mirror::Object::ClassOffset().Int32Value());
1770
1771 // Set the low byte of the result to 0 or 1 from the compare condition code.
1772 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1773
1774 LIR* target = NewLIR0(kPseudoTargetLabel);
1775 null_branchover->target = target;
1776 FreeTemp(check_class);
1777 if (IsTemp(result_reg)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001778 OpRegCopy(rl_result.reg.GetReg(), result_reg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001779 FreeTemp(result_reg);
1780 }
1781 StoreValue(rl_dest, rl_result);
1782}
1783
Mark Mendell6607d972014-02-10 06:54:18 -08001784void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1785 bool type_known_abstract, bool use_declaring_class,
1786 bool can_assume_type_is_in_dex_cache,
1787 uint32_t type_idx, RegLocation rl_dest,
1788 RegLocation rl_src) {
1789 FlushAllRegs();
1790 // May generate a call - use explicit registers.
1791 LockCallTemps();
1792 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1793 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1794 // Reference must end up in kArg0.
1795 if (needs_access_check) {
1796 // Check we have access to type_idx and if not throw IllegalAccessError,
1797 // Caller function returns Class* in kArg0.
1798 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1799 type_idx, true);
1800 OpRegCopy(class_reg, TargetReg(kRet0));
1801 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1802 } else if (use_declaring_class) {
1803 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1804 LoadWordDisp(TargetReg(kArg1),
1805 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1806 } else {
1807 // Load dex cache entry into class_reg (kArg2).
1808 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1809 LoadWordDisp(TargetReg(kArg1),
1810 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1811 int32_t offset_of_type =
1812 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1813 * type_idx);
1814 LoadWordDisp(class_reg, offset_of_type, class_reg);
1815 if (!can_assume_type_is_in_dex_cache) {
1816 // Need to test presence of type in dex cache at runtime.
1817 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1818 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1819 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1820 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1821 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1822 // Rejoin code paths
1823 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1824 hop_branch->target = hop_target;
1825 }
1826 }
1827 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1828 RegLocation rl_result = GetReturn(false);
1829
1830 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001831 DCHECK_LT(rl_result.reg.GetReg(), 4);
Mark Mendell6607d972014-02-10 06:54:18 -08001832
1833 // Is the class NULL?
1834 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1835
1836 /* Load object->klass_. */
1837 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1838 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1839 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1840 LIR* branchover = nullptr;
1841 if (type_known_final) {
1842 // Ensure top 3 bytes of result are 0.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001843 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell6607d972014-02-10 06:54:18 -08001844 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1845 // Set the low byte of the result to 0 or 1 from the compare condition code.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001846 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
Mark Mendell6607d972014-02-10 06:54:18 -08001847 } else {
1848 if (!type_known_abstract) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001849 LoadConstant(rl_result.reg.GetReg(), 1); // Assume result succeeds.
Mark Mendell6607d972014-02-10 06:54:18 -08001850 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1851 }
1852 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1853 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1854 }
1855 // TODO: only clobber when type isn't final?
1856 ClobberCallerSave();
1857 /* Branch targets here. */
1858 LIR* target = NewLIR0(kPseudoTargetLabel);
1859 StoreValue(rl_dest, rl_result);
1860 branch1->target = target;
1861 if (branchover != nullptr) {
1862 branchover->target = target;
1863 }
1864}
1865
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001866void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1867 RegLocation rl_lhs, RegLocation rl_rhs) {
1868 OpKind op = kOpBkpt;
1869 bool is_div_rem = false;
1870 bool unary = false;
1871 bool shift_op = false;
1872 bool is_two_addr = false;
1873 RegLocation rl_result;
1874 switch (opcode) {
1875 case Instruction::NEG_INT:
1876 op = kOpNeg;
1877 unary = true;
1878 break;
1879 case Instruction::NOT_INT:
1880 op = kOpMvn;
1881 unary = true;
1882 break;
1883 case Instruction::ADD_INT_2ADDR:
1884 is_two_addr = true;
1885 // Fallthrough
1886 case Instruction::ADD_INT:
1887 op = kOpAdd;
1888 break;
1889 case Instruction::SUB_INT_2ADDR:
1890 is_two_addr = true;
1891 // Fallthrough
1892 case Instruction::SUB_INT:
1893 op = kOpSub;
1894 break;
1895 case Instruction::MUL_INT_2ADDR:
1896 is_two_addr = true;
1897 // Fallthrough
1898 case Instruction::MUL_INT:
1899 op = kOpMul;
1900 break;
1901 case Instruction::DIV_INT_2ADDR:
1902 is_two_addr = true;
1903 // Fallthrough
1904 case Instruction::DIV_INT:
1905 op = kOpDiv;
1906 is_div_rem = true;
1907 break;
1908 /* NOTE: returns in kArg1 */
1909 case Instruction::REM_INT_2ADDR:
1910 is_two_addr = true;
1911 // Fallthrough
1912 case Instruction::REM_INT:
1913 op = kOpRem;
1914 is_div_rem = true;
1915 break;
1916 case Instruction::AND_INT_2ADDR:
1917 is_two_addr = true;
1918 // Fallthrough
1919 case Instruction::AND_INT:
1920 op = kOpAnd;
1921 break;
1922 case Instruction::OR_INT_2ADDR:
1923 is_two_addr = true;
1924 // Fallthrough
1925 case Instruction::OR_INT:
1926 op = kOpOr;
1927 break;
1928 case Instruction::XOR_INT_2ADDR:
1929 is_two_addr = true;
1930 // Fallthrough
1931 case Instruction::XOR_INT:
1932 op = kOpXor;
1933 break;
1934 case Instruction::SHL_INT_2ADDR:
1935 is_two_addr = true;
1936 // Fallthrough
1937 case Instruction::SHL_INT:
1938 shift_op = true;
1939 op = kOpLsl;
1940 break;
1941 case Instruction::SHR_INT_2ADDR:
1942 is_two_addr = true;
1943 // Fallthrough
1944 case Instruction::SHR_INT:
1945 shift_op = true;
1946 op = kOpAsr;
1947 break;
1948 case Instruction::USHR_INT_2ADDR:
1949 is_two_addr = true;
1950 // Fallthrough
1951 case Instruction::USHR_INT:
1952 shift_op = true;
1953 op = kOpLsr;
1954 break;
1955 default:
1956 LOG(FATAL) << "Invalid word arith op: " << opcode;
1957 }
1958
1959 // Can we convert to a two address instruction?
1960 if (!is_two_addr &&
1961 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1962 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1963 is_two_addr = true;
1964 }
1965
1966 // Get the div/rem stuff out of the way.
1967 if (is_div_rem) {
1968 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1969 StoreValue(rl_dest, rl_result);
1970 return;
1971 }
1972
1973 if (unary) {
1974 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1975 rl_result = UpdateLoc(rl_dest);
1976 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001977 OpRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001978 } else {
1979 if (shift_op) {
1980 // X86 doesn't require masking and must use ECX.
1981 int t_reg = TargetReg(kCount); // rCX
1982 LoadValueDirectFixed(rl_rhs, t_reg);
1983 if (is_two_addr) {
1984 // Can we do this directly into memory?
1985 rl_result = UpdateLoc(rl_dest);
1986 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1987 if (rl_result.location != kLocPhysReg) {
1988 // Okay, we can do this into memory
1989 OpMemReg(op, rl_result, t_reg);
1990 FreeTemp(t_reg);
1991 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001992 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001993 // Can do this directly into the result register
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001994 OpRegReg(op, rl_result.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001995 FreeTemp(t_reg);
1996 StoreFinalValue(rl_dest, rl_result);
1997 return;
1998 }
1999 }
2000 // Three address form, or we can't do directly.
2001 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2002 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002003 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002004 FreeTemp(t_reg);
2005 } else {
2006 // Multiply is 3 operand only (sort of).
2007 if (is_two_addr && op != kOpMul) {
2008 // Can we do this directly into memory?
2009 rl_result = UpdateLoc(rl_dest);
2010 if (rl_result.location == kLocPhysReg) {
2011 // Can we do this from memory directly?
2012 rl_rhs = UpdateLoc(rl_rhs);
2013 if (rl_rhs.location != kLocPhysReg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002014 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002015 StoreFinalValue(rl_dest, rl_result);
2016 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002017 } else if (!IsFpReg(rl_rhs.reg.GetReg())) {
2018 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002019 StoreFinalValue(rl_dest, rl_result);
2020 return;
2021 }
2022 }
2023 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2024 if (rl_result.location != kLocPhysReg) {
2025 // Okay, we can do this into memory.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002026 OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002027 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002028 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002029 // Can do this directly into the result register.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002030 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002031 StoreFinalValue(rl_dest, rl_result);
2032 return;
2033 } else {
2034 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2035 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002036 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002037 }
2038 } else {
2039 // Try to use reg/memory instructions.
2040 rl_lhs = UpdateLoc(rl_lhs);
2041 rl_rhs = UpdateLoc(rl_rhs);
2042 // We can't optimize with FP registers.
2043 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2044 // Something is difficult, so fall back to the standard case.
2045 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2046 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2047 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002048 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002049 } else {
2050 // We can optimize by moving to result and using memory operands.
2051 if (rl_rhs.location != kLocPhysReg) {
2052 // Force LHS into result.
Serguei Katkov66da1362014-03-14 13:33:33 +07002053 // We should be careful with order here
2054 // If rl_dest and rl_lhs points to the same VR we should load first
2055 // If the are different we should find a register first for dest
2056 if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2057 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2058 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2059 } else {
2060 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2061 LoadValueDirect(rl_lhs, rl_result.reg.GetReg());
2062 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002063 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002064 } else if (rl_lhs.location != kLocPhysReg) {
2065 // RHS is in a register; LHS is in memory.
2066 if (op != kOpSub) {
2067 // Force RHS into result and operate on memory.
2068 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002069 OpRegCopy(rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2070 OpRegMem(op, rl_result.reg.GetReg(), rl_lhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002071 } else {
2072 // Subtraction isn't commutative.
2073 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2074 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2075 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002076 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002077 }
2078 } else {
2079 // Both are in registers.
2080 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2081 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2082 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002083 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002084 }
2085 }
2086 }
2087 }
2088 }
2089 StoreValue(rl_dest, rl_result);
2090}
2091
2092bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2093 // If we have non-core registers, then we can't do good things.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002094 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002095 return false;
2096 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002097 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002098 return false;
2099 }
2100
2101 // Everything will be fine :-).
2102 return true;
2103}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002104} // namespace art