blob: 1fe0af9a3e37a30afeb971ef250325b18beeb581 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
Vladimir Markoa1a70742014-03-03 10:28:05 +0000193 ConditionCode ccode = mir->meta.ccode;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800194
195 // The kMirOpSelect has two variants, one for constants and one for moves.
196 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
197
198 if (is_constant_case) {
199 int true_val = mir->dalvikInsn.vB;
200 int false_val = mir->dalvikInsn.vC;
201 rl_result = EvalLoc(rl_dest, kCoreReg, true);
202
203 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000204 * For ccode == kCondEq:
205 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800206 * 1) When the true case is zero and result_reg is not same as src_reg:
207 * xor result_reg, result_reg
208 * cmp $0, src_reg
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 * 2) When the false case is zero and result_reg is not same as src_reg:
212 * xor result_reg, result_reg
213 * cmp $0, src_reg
214 * mov t1, $true_case
215 * cmovz result_reg, t1
216 * 3) All other cases (we do compare first to set eflags):
217 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000218 * mov result_reg, $false_case
219 * mov t1, $true_case
220 * cmovz result_reg, t1
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800221 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000222 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800223 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
224 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
225 const bool catch_all_case = !(true_zero_case || false_zero_case);
226
227 if (true_zero_case || false_zero_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000228 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800229 }
230
231 if (true_zero_case || false_zero_case || catch_all_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000232 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800233 }
234
235 if (catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000236 OpRegImm(kOpMov, rl_result.reg.GetReg(), false_val);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800237 }
238
239 if (true_zero_case || false_zero_case || catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000240 ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
241 int immediateForTemp = true_zero_case ? false_val : true_val;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800242 int temp1_reg = AllocTemp();
243 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
244
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000245 OpCondRegReg(kOpCmov, cc, rl_result.reg.GetReg(), temp1_reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800246
247 FreeTemp(temp1_reg);
248 }
249 } else {
250 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
251 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
252 rl_true = LoadValue(rl_true, kCoreReg);
253 rl_false = LoadValue(rl_false, kCoreReg);
254 rl_result = EvalLoc(rl_dest, kCoreReg, true);
255
256 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000257 * For ccode == kCondEq:
258 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800259 * 1) When true case is already in place:
260 * cmp $0, src_reg
261 * cmovnz result_reg, false_reg
262 * 2) When false case is already in place:
263 * cmp $0, src_reg
264 * cmovz result_reg, true_reg
265 * 3) When neither cases are in place:
266 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000267 * mov result_reg, false_reg
268 * cmovz result_reg, true_reg
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800269 */
270
271 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000272 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800273
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000274 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000275 OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg.GetReg(), rl_false.reg.GetReg());
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000276 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000277 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800278 } else {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000279 OpRegCopy(rl_result.reg.GetReg(), rl_false.reg.GetReg());
280 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800281 }
282 }
283
284 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700285}
286
287void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700288 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700289 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
290 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000291 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800292
293 if (rl_src1.is_const) {
294 std::swap(rl_src1, rl_src2);
295 ccode = FlipComparisonOrder(ccode);
296 }
297 if (rl_src2.is_const) {
298 // Do special compare/branch against simple const operand
299 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
300 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
301 return;
302 }
303
Brian Carlstrom7940e442013-07-12 13:46:57 -0700304 FlushAllRegs();
305 LockCallTemps(); // Prepare for explicit register usage
306 LoadValueDirectWideFixed(rl_src1, r0, r1);
307 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700308 // Swap operands and condition code to prevent use of zero flag.
309 if (ccode == kCondLe || ccode == kCondGt) {
310 // Compute (r3:r2) = (r3:r2) - (r1:r0)
311 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
312 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
313 } else {
314 // Compute (r1:r0) = (r1:r0) - (r3:r2)
315 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
316 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
317 }
318 switch (ccode) {
319 case kCondEq:
320 case kCondNe:
321 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
322 break;
323 case kCondLe:
324 ccode = kCondGe;
325 break;
326 case kCondGt:
327 ccode = kCondLt;
328 break;
329 case kCondLt:
330 case kCondGe:
331 break;
332 default:
333 LOG(FATAL) << "Unexpected ccode: " << ccode;
334 }
335 OpCondBranch(ccode, taken);
336}
337
Mark Mendell412d4f82013-12-18 13:32:36 -0800338void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
339 int64_t val, ConditionCode ccode) {
340 int32_t val_lo = Low32Bits(val);
341 int32_t val_hi = High32Bits(val);
342 LIR* taken = &block_label_list_[bb->taken];
343 LIR* not_taken = &block_label_list_[bb->fall_through];
344 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000345 int32_t low_reg = rl_src1.reg.GetReg();
346 int32_t high_reg = rl_src1.reg.GetHighReg();
Mark Mendell412d4f82013-12-18 13:32:36 -0800347
348 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
349 int t_reg = AllocTemp();
350 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
351 FreeTemp(t_reg);
352 OpCondBranch(ccode, taken);
353 return;
354 }
355
356 OpRegImm(kOpCmp, high_reg, val_hi);
357 switch (ccode) {
358 case kCondEq:
359 case kCondNe:
360 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
361 break;
362 case kCondLt:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondUlt;
366 break;
367 case kCondLe:
368 OpCondBranch(kCondLt, taken);
369 OpCondBranch(kCondGt, not_taken);
370 ccode = kCondLs;
371 break;
372 case kCondGt:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondHi;
376 break;
377 case kCondGe:
378 OpCondBranch(kCondGt, taken);
379 OpCondBranch(kCondLt, not_taken);
380 ccode = kCondUge;
381 break;
382 default:
383 LOG(FATAL) << "Unexpected ccode: " << ccode;
384 }
385 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
386}
387
Mark Mendell2bf31e62014-01-23 12:13:40 -0800388void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
389 // It does not make sense to calculate magic and shift for zero divisor.
390 DCHECK_NE(divisor, 0);
391
392 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
393 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
394 * The magic number M and shift S can be calculated in the following way:
395 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
396 * where divisor(d) >=2.
397 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
398 * where divisor(d) <= -2.
399 * Thus nc can be calculated like:
400 * nc = 2^31 + 2^31 % d - 1, where d >= 2
401 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
402 *
403 * So the shift p is the smallest p satisfying
404 * 2^p > nc * (d - 2^p % d), where d >= 2
405 * 2^p > nc * (d + 2^p % d), where d <= -2.
406 *
407 * the magic number M is calcuated by
408 * M = (2^p + d - 2^p % d) / d, where d >= 2
409 * M = (2^p - d - 2^p % d) / d, where d <= -2.
410 *
411 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
412 * the shift number S.
413 */
414
415 int32_t p = 31;
416 const uint32_t two31 = 0x80000000U;
417
418 // Initialize the computations.
419 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
420 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
421 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
422 uint32_t quotient1 = two31 / abs_nc;
423 uint32_t remainder1 = two31 % abs_nc;
424 uint32_t quotient2 = two31 / abs_d;
425 uint32_t remainder2 = two31 % abs_d;
426
427 /*
428 * To avoid handling both positive and negative divisor, Hacker's Delight
429 * introduces a method to handle these 2 cases together to avoid duplication.
430 */
431 uint32_t delta;
432 do {
433 p++;
434 quotient1 = 2 * quotient1;
435 remainder1 = 2 * remainder1;
436 if (remainder1 >= abs_nc) {
437 quotient1++;
438 remainder1 = remainder1 - abs_nc;
439 }
440 quotient2 = 2 * quotient2;
441 remainder2 = 2 * remainder2;
442 if (remainder2 >= abs_d) {
443 quotient2++;
444 remainder2 = remainder2 - abs_d;
445 }
446 delta = abs_d - remainder2;
447 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
448
449 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
450 shift = p - 32;
451}
452
Brian Carlstrom7940e442013-07-12 13:46:57 -0700453RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700454 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700455 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
456 return rl_dest;
457}
458
Mark Mendell2bf31e62014-01-23 12:13:40 -0800459RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
460 int imm, bool is_div) {
461 // Use a multiply (and fixup) to perform an int div/rem by a constant.
462
463 // We have to use fixed registers, so flush all the temps.
464 FlushAllRegs();
465 LockCallTemps(); // Prepare for explicit register usage.
466
467 // Assume that the result will be in EDX.
468 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000469 RegStorage(RegStorage::k32BitSolo, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800470
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700471 // handle div/rem by 1 special case.
472 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800473 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700474 // x / 1 == x.
475 StoreValue(rl_result, rl_src);
476 } else {
477 // x % 1 == 0.
478 LoadConstantNoClobber(r0, 0);
479 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000480 rl_result.reg.SetReg(r0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700481 }
482 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
483 if (is_div) {
484 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800485 LoadValueDirectFixed(rl_src, r0);
486 OpRegImm(kOpCmp, r0, 0x80000000);
487 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
488
489 // for x != MIN_INT, x / -1 == -x.
490 NewLIR1(kX86Neg32R, r0);
491
492 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
493 // The target for cmp/jmp above.
494 minint_branch->target = NewLIR0(kPseudoTargetLabel);
495 // EAX already contains the right value (0x80000000),
496 branch_around->target = NewLIR0(kPseudoTargetLabel);
497 } else {
498 // x % -1 == 0.
499 LoadConstantNoClobber(r0, 0);
500 }
501 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000502 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800503 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700504 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800505 // Use H.S.Warren's Hacker's Delight Chapter 10 and
506 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
507 int magic, shift;
508 CalculateMagicAndShift(imm, magic, shift);
509
510 /*
511 * For imm >= 2,
512 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
513 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
514 * For imm <= -2,
515 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
516 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
517 * We implement this algorithm in the following way:
518 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
519 * 2. if imm > 0 and magic < 0, add numerator to EDX
520 * if imm < 0 and magic > 0, sub numerator from EDX
521 * 3. if S !=0, SAR S bits for EDX
522 * 4. add 1 to EDX if EDX < 0
523 * 5. Thus, EDX is the quotient
524 */
525
526 // Numerator into EAX.
527 int numerator_reg = -1;
528 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
529 // We will need the value later.
530 if (rl_src.location == kLocPhysReg) {
531 // We can use it directly.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000532 DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
533 numerator_reg = rl_src.reg.GetReg();
Mark Mendell2bf31e62014-01-23 12:13:40 -0800534 } else {
535 LoadValueDirectFixed(rl_src, r1);
536 numerator_reg = r1;
537 }
538 OpRegCopy(r0, numerator_reg);
539 } else {
540 // Only need this once. Just put it into EAX.
541 LoadValueDirectFixed(rl_src, r0);
542 }
543
544 // EDX = magic.
545 LoadConstantNoClobber(r2, magic);
546
547 // EDX:EAX = magic & dividend.
548 NewLIR1(kX86Imul32DaR, r2);
549
550 if (imm > 0 && magic < 0) {
551 // Add numerator to EDX.
552 DCHECK_NE(numerator_reg, -1);
553 NewLIR2(kX86Add32RR, r2, numerator_reg);
554 } else if (imm < 0 && magic > 0) {
555 DCHECK_NE(numerator_reg, -1);
556 NewLIR2(kX86Sub32RR, r2, numerator_reg);
557 }
558
559 // Do we need the shift?
560 if (shift != 0) {
561 // Shift EDX by 'shift' bits.
562 NewLIR2(kX86Sar32RI, r2, shift);
563 }
564
565 // Add 1 to EDX if EDX < 0.
566
567 // Move EDX to EAX.
568 OpRegCopy(r0, r2);
569
570 // Move sign bit to bit 0, zeroing the rest.
571 NewLIR2(kX86Shr32RI, r2, 31);
572
573 // EDX = EDX + EAX.
574 NewLIR2(kX86Add32RR, r2, r0);
575
576 // Quotient is in EDX.
577 if (!is_div) {
578 // We need to compute the remainder.
579 // Remainder is divisor - (quotient * imm).
580 DCHECK_NE(numerator_reg, -1);
581 OpRegCopy(r0, numerator_reg);
582
583 // EAX = numerator * imm.
584 OpRegRegImm(kOpMul, r2, r2, imm);
585
586 // EDX -= EAX.
587 NewLIR2(kX86Sub32RR, r0, r2);
588
589 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000590 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800591 }
592 }
593
594 return rl_result;
595}
596
Brian Carlstrom7940e442013-07-12 13:46:57 -0700597RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700598 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700599 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
600 return rl_dest;
601}
602
Mark Mendell2bf31e62014-01-23 12:13:40 -0800603RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
604 RegLocation rl_src2, bool is_div, bool check_zero) {
605 // We have to use fixed registers, so flush all the temps.
606 FlushAllRegs();
607 LockCallTemps(); // Prepare for explicit register usage.
608
609 // Load LHS into EAX.
610 LoadValueDirectFixed(rl_src1, r0);
611
612 // Load RHS into EBX.
613 LoadValueDirectFixed(rl_src2, r1);
614
615 // Copy LHS sign bit into EDX.
616 NewLIR0(kx86Cdq32Da);
617
618 if (check_zero) {
619 // Handle division by zero case.
620 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
621 }
622
623 // Have to catch 0x80000000/-1 case, or we will get an exception!
624 OpRegImm(kOpCmp, r1, -1);
625 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
626
627 // RHS is -1.
628 OpRegImm(kOpCmp, r0, 0x80000000);
629 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
630
631 // In 0x80000000/-1 case.
632 if (!is_div) {
633 // For DIV, EAX is already right. For REM, we need EDX 0.
634 LoadConstantNoClobber(r2, 0);
635 }
636 LIR* done = NewLIR1(kX86Jmp8, 0);
637
638 // Expected case.
639 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
640 minint_branch->target = minus_one_branch->target;
641 NewLIR1(kX86Idivmod32DaR, r1);
642 done->target = NewLIR0(kPseudoTargetLabel);
643
644 // Result is in EAX for div and EDX for rem.
645 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000646 RegStorage(RegStorage::k32BitSolo, r0), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800647 if (!is_div) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000648 rl_result.reg.SetReg(r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800649 }
650 return rl_result;
651}
652
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700653bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700654 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800655
656 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700657 RegLocation rl_src1 = info->args[0];
658 RegLocation rl_src2 = info->args[1];
659 rl_src1 = LoadValue(rl_src1, kCoreReg);
660 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800661
Brian Carlstrom7940e442013-07-12 13:46:57 -0700662 RegLocation rl_dest = InlineTarget(info);
663 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800664
665 /*
666 * If the result register is the same as the second element, then we need to be careful.
667 * The reason is that the first copy will inadvertently clobber the second element with
668 * the first one thus yielding the wrong result. Thus we do a swap in that case.
669 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000670 if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800671 std::swap(rl_src1, rl_src2);
672 }
673
674 // Pick the first integer as min/max.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000675 OpRegCopy(rl_result.reg.GetReg(), rl_src1.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800676
677 // If the integers are both in the same register, then there is nothing else to do
678 // because they are equal and we have already moved one into the result.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000679 if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800680 // It is possible we didn't pick correctly so do the actual comparison now.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000681 OpRegReg(kOpCmp, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800682
683 // Conditionally move the other integer into the destination register.
684 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000685 OpCondRegReg(kOpCmov, condition_code, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800686 }
687
Brian Carlstrom7940e442013-07-12 13:46:57 -0700688 StoreValue(rl_dest, rl_result);
689 return true;
690}
691
Vladimir Markoe508a202013-11-04 15:24:22 +0000692bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
693 RegLocation rl_src_address = info->args[0]; // long address
694 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800695 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000696 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
697 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
698 if (size == kLong) {
699 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000700 LoadBaseDispWide(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000701 StoreValueWide(rl_dest, rl_result);
702 } else {
703 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
704 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000705 LoadBaseDisp(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), size, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000706 StoreValue(rl_dest, rl_result);
707 }
708 return true;
709}
710
711bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
712 RegLocation rl_src_address = info->args[0]; // long address
713 rl_src_address.wide = 0; // ignore high half in info->args[1]
714 RegLocation rl_src_value = info->args[2]; // [size] value
715 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
716 if (size == kLong) {
717 // Unaligned access is allowed on x86.
718 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000719 StoreBaseDispWide(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
Vladimir Markoe508a202013-11-04 15:24:22 +0000720 } else {
721 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
722 // Unaligned access is allowed on x86.
723 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000724 StoreBaseDisp(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), size);
Vladimir Markoe508a202013-11-04 15:24:22 +0000725 }
726 return true;
727}
728
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700729void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700730 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
731}
732
Ian Rogers468532e2013-08-05 10:56:33 -0700733void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
734 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700735}
736
Vladimir Marko1c282e22013-11-21 14:49:47 +0000737bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000738 DCHECK_EQ(cu_->instruction_set, kX86);
739 // Unused - RegLocation rl_src_unsafe = info->args[0];
740 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
741 RegLocation rl_src_offset = info->args[2]; // long low
742 rl_src_offset.wide = 0; // ignore high half in info->args[3]
743 RegLocation rl_src_expected = info->args[4]; // int, long or Object
744 // If is_long, high half is in info->args[5]
745 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
746 // If is_long, high half is in info->args[7]
747
748 if (is_long) {
Vladimir Marko70b797d2013-12-03 15:25:24 +0000749 FlushAllRegs();
750 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000751 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
752 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000753 NewLIR1(kX86Push32R, rDI);
754 MarkTemp(rDI);
755 LockTemp(rDI);
756 NewLIR1(kX86Push32R, rSI);
757 MarkTemp(rSI);
758 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000759 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
760 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_obj.s_reg_low) + push_offset, rDI);
761 LoadWordDisp(TargetReg(kSp), SRegOffset(rl_src_offset.s_reg_low) + push_offset, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000762 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
763 FreeTemp(rSI);
764 UnmarkTemp(rSI);
765 NewLIR1(kX86Pop32R, rSI);
766 FreeTemp(rDI);
767 UnmarkTemp(rDI);
768 NewLIR1(kX86Pop32R, rDI);
769 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000770 } else {
771 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
772 FlushReg(r0);
773 LockTemp(r0);
774
775 // Release store semantics, get the barrier out of the way. TODO: revisit
776 GenMemBarrier(kStoreLoad);
777
778 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
779 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
780
781 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
782 // Mark card for object assuming new value is stored.
783 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000784 MarkGCCard(rl_new_value.reg.GetReg(), rl_object.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000785 LockTemp(r0);
786 }
787
788 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
789 LoadValueDirect(rl_src_expected, r0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000790 NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000791
792 FreeTemp(r0);
793 }
794
795 // Convert ZF to boolean
796 RegLocation rl_dest = InlineTarget(info); // boolean place for result
797 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000798 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
799 NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000800 StoreValue(rl_dest, rl_result);
801 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700802}
803
804LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800805 CHECK(base_of_code_ != nullptr);
806
807 // Address the start of the method
808 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
809 LoadValueDirectFixed(rl_method, reg);
810 store_method_addr_used_ = true;
811
812 // Load the proper value from the literal area.
813 // We don't know the proper offset for the value, so pick one that will force
814 // 4 byte offset. We will fix this up in the assembler later to have the right
815 // value.
816 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
817 res->target = target;
818 res->flags.fixup = kFixupLoad;
819 SetMemRefType(res, true, kLiteral);
820 store_method_addr_used_ = true;
821 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700822}
823
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700824LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700825 LOG(FATAL) << "Unexpected use of OpVldm for x86";
826 return NULL;
827}
828
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700829LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700830 LOG(FATAL) << "Unexpected use of OpVstm for x86";
831 return NULL;
832}
833
834void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
835 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700836 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 int t_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000838 OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), second_bit - first_bit);
839 OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), t_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700840 FreeTemp(t_reg);
841 if (first_bit != 0) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000842 OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_result.reg.GetReg(), first_bit);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700843 }
844}
845
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700846void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800847 // We are not supposed to clobber either of the provided registers, so allocate
848 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700849 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800850
851 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700852 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800853
854 // In case of zero, throw ArithmeticException.
855 GenCheck(kCondEq, kThrowDivZero);
856
857 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700858 FreeTemp(t_reg);
859}
860
861// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700862LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700863 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700864 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
865}
866
867// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700868LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700869 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800870 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700871}
872
buzbee11b63d12013-08-27 07:34:17 -0700873bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700874 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700875 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
876 return false;
877}
878
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700879LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700880 LOG(FATAL) << "Unexpected use of OpIT in x86";
881 return NULL;
882}
883
Mark Mendell4708dcd2014-01-22 09:05:18 -0800884void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
885 switch (val) {
886 case 0:
887 NewLIR2(kX86Xor32RR, dest, dest);
888 break;
889 case 1:
890 OpRegCopy(dest, src);
891 break;
892 default:
893 OpRegRegImm(kOpMul, dest, src, val);
894 break;
895 }
896}
897
898void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
899 LIR *m;
900 switch (val) {
901 case 0:
902 NewLIR2(kX86Xor32RR, dest, dest);
903 break;
904 case 1:
905 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
906 break;
907 default:
908 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
909 displacement, val);
910 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
911 break;
912 }
913}
914
Mark Mendelle02d48f2014-01-15 11:19:23 -0800915void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700916 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800917 if (rl_src1.is_const) {
918 std::swap(rl_src1, rl_src2);
919 }
920 // Are we multiplying by a constant?
921 if (rl_src2.is_const) {
922 // Do special compare/branch against simple const operand
923 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
924 if (val == 0) {
925 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000926 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
927 OpRegReg(kOpXor, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800928 StoreValueWide(rl_dest, rl_result);
929 return;
930 } else if (val == 1) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800931 StoreValueWide(rl_dest, rl_src1);
932 return;
933 } else if (val == 2) {
934 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
935 return;
936 } else if (IsPowerOfTwo(val)) {
937 int shift_amount = LowestSetBit(val);
938 if (!BadOverlap(rl_src1, rl_dest)) {
939 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
940 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
941 rl_src1, shift_amount);
942 StoreValueWide(rl_dest, rl_result);
943 return;
944 }
945 }
946
947 // Okay, just bite the bullet and do it.
948 int32_t val_lo = Low32Bits(val);
949 int32_t val_hi = High32Bits(val);
950 FlushAllRegs();
951 LockCallTemps(); // Prepare for explicit register usage.
952 rl_src1 = UpdateLocWide(rl_src1);
953 bool src1_in_reg = rl_src1.location == kLocPhysReg;
954 int displacement = SRegOffset(rl_src1.s_reg_low);
955
956 // ECX <- 1H * 2L
957 // EAX <- 1L * 2H
958 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000959 GenImulRegImm(r1, rl_src1.reg.GetHighReg(), val_lo);
960 GenImulRegImm(r0, rl_src1.reg.GetReg(), val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800961 } else {
962 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
963 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
964 }
965
966 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
967 NewLIR2(kX86Add32RR, r1, r0);
968
969 // EAX <- 2L
970 LoadConstantNoClobber(r0, val_lo);
971
972 // EDX:EAX <- 2L * 1L (double precision)
973 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000974 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800975 } else {
976 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
977 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
978 true /* is_load */, true /* is_64bit */);
979 }
980
981 // EDX <- EDX + ECX (add high words)
982 NewLIR2(kX86Add32RR, r2, r1);
983
984 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000985 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
986 RegStorage(RegStorage::k64BitPair, r0, r2),
Mark Mendell4708dcd2014-01-22 09:05:18 -0800987 INVALID_SREG, INVALID_SREG};
988 StoreValueWide(rl_dest, rl_result);
989 return;
990 }
991
992 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -0800993 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
994 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
995 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
996
Mark Mendell4708dcd2014-01-22 09:05:18 -0800997 FlushAllRegs();
998 LockCallTemps(); // Prepare for explicit register usage.
999 rl_src1 = UpdateLocWide(rl_src1);
1000 rl_src2 = UpdateLocWide(rl_src2);
1001
1002 // At this point, the VRs are in their home locations.
1003 bool src1_in_reg = rl_src1.location == kLocPhysReg;
1004 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1005
1006 // ECX <- 1H
1007 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001008 NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001009 } else {
1010 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1011 kWord, GetSRegHi(rl_src1.s_reg_low));
1012 }
1013
Mark Mendellde99bba2014-02-14 12:15:02 -08001014 if (is_square) {
1015 // Take advantage of the fact that the values are the same.
1016 // ECX <- ECX * 2L (1H * 2L)
1017 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001018 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001019 } else {
1020 int displacement = SRegOffset(rl_src2.s_reg_low);
1021 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1022 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1023 true /* is_load */, true /* is_64bit */);
1024 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001025
Mark Mendellde99bba2014-02-14 12:15:02 -08001026 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1027 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001028 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001029 // EAX <- 2H
1030 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001031 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001032 } else {
1033 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1034 kWord, GetSRegHi(rl_src2.s_reg_low));
1035 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001036
Mark Mendellde99bba2014-02-14 12:15:02 -08001037 // EAX <- EAX * 1L (2H * 1L)
1038 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001039 NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001040 } else {
1041 int displacement = SRegOffset(rl_src1.s_reg_low);
1042 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1043 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1044 true /* is_load */, true /* is_64bit */);
1045 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001046
Mark Mendellde99bba2014-02-14 12:15:02 -08001047 // ECX <- ECX * 2L (1H * 2L)
1048 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001049 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001050 } else {
1051 int displacement = SRegOffset(rl_src2.s_reg_low);
1052 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1053 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1054 true /* is_load */, true /* is_64bit */);
1055 }
1056
1057 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1058 NewLIR2(kX86Add32RR, r1, r0);
1059 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001060
1061 // EAX <- 2L
1062 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001063 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001064 } else {
1065 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1066 kWord, rl_src2.s_reg_low);
1067 }
1068
1069 // EDX:EAX <- 2L * 1L (double precision)
1070 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001071 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001072 } else {
1073 int displacement = SRegOffset(rl_src1.s_reg_low);
1074 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1075 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1076 true /* is_load */, true /* is_64bit */);
1077 }
1078
1079 // EDX <- EDX + ECX (add high words)
1080 NewLIR2(kX86Add32RR, r2, r1);
1081
1082 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001083 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1084 RegStorage(RegStorage::k64BitPair, r0, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell4708dcd2014-01-22 09:05:18 -08001085 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001086}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001087
1088void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1089 Instruction::Code op) {
1090 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1091 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1092 if (rl_src.location == kLocPhysReg) {
1093 // Both operands are in registers.
Serguei Katkovab5545f2014-03-25 10:51:15 +07001094 // But we must ensure that rl_src is in pair
1095 rl_src = EvalLocWide(rl_src, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001096 if (rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001097 // The registers are the same, so we would clobber it before the use.
1098 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001099 OpRegCopy(temp_reg, rl_dest.reg.GetReg());
1100 rl_src.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001101 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001102 NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001103
1104 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001105 NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1106 FreeTemp(rl_src.reg.GetReg());
1107 FreeTemp(rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001108 return;
1109 }
1110
1111 // RHS is in memory.
1112 DCHECK((rl_src.location == kLocDalvikFrame) ||
1113 (rl_src.location == kLocCompilerTemp));
1114 int rBase = TargetReg(kSp);
1115 int displacement = SRegOffset(rl_src.s_reg_low);
1116
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001117 LIR *lir = NewLIR3(x86op, rl_dest.reg.GetReg(), rBase, displacement + LOWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001118 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1119 true /* is_load */, true /* is64bit */);
1120 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001121 lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), rBase, displacement + HIWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001122 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1123 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001124}
1125
Mark Mendelle02d48f2014-01-15 11:19:23 -08001126void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1127 rl_dest = UpdateLocWide(rl_dest);
1128 if (rl_dest.location == kLocPhysReg) {
1129 // Ensure we are in a register pair
1130 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1131
1132 rl_src = UpdateLocWide(rl_src);
1133 GenLongRegOrMemOp(rl_result, rl_src, op);
1134 StoreFinalValueWide(rl_dest, rl_result);
1135 return;
1136 }
1137
1138 // It wasn't in registers, so it better be in memory.
1139 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1140 (rl_dest.location == kLocCompilerTemp));
1141 rl_src = LoadValueWide(rl_src, kCoreReg);
1142
1143 // Operate directly into memory.
1144 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1145 int rBase = TargetReg(kSp);
1146 int displacement = SRegOffset(rl_dest.s_reg_low);
1147
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001148 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001149 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1150 false /* is_load */, true /* is64bit */);
1151 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001152 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001153 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1154 false /* is_load */, true /* is64bit */);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001155 FreeTemp(rl_src.reg.GetReg());
1156 FreeTemp(rl_src.reg.GetHighReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001157}
1158
Mark Mendelle02d48f2014-01-15 11:19:23 -08001159void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1160 RegLocation rl_src2, Instruction::Code op,
1161 bool is_commutative) {
1162 // Is this really a 2 operand operation?
1163 switch (op) {
1164 case Instruction::ADD_LONG_2ADDR:
1165 case Instruction::SUB_LONG_2ADDR:
1166 case Instruction::AND_LONG_2ADDR:
1167 case Instruction::OR_LONG_2ADDR:
1168 case Instruction::XOR_LONG_2ADDR:
1169 GenLongArith(rl_dest, rl_src2, op);
1170 return;
1171 default:
1172 break;
1173 }
1174
1175 if (rl_dest.location == kLocPhysReg) {
1176 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1177
1178 // We are about to clobber the LHS, so it needs to be a temp.
1179 rl_result = ForceTempWide(rl_result);
1180
1181 // Perform the operation using the RHS.
1182 rl_src2 = UpdateLocWide(rl_src2);
1183 GenLongRegOrMemOp(rl_result, rl_src2, op);
1184
1185 // And now record that the result is in the temp.
1186 StoreFinalValueWide(rl_dest, rl_result);
1187 return;
1188 }
1189
1190 // It wasn't in registers, so it better be in memory.
1191 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1192 (rl_dest.location == kLocCompilerTemp));
1193 rl_src1 = UpdateLocWide(rl_src1);
1194 rl_src2 = UpdateLocWide(rl_src2);
1195
1196 // Get one of the source operands into temporary register.
1197 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001198 if (IsTemp(rl_src1.reg.GetReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001199 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1200 } else if (is_commutative) {
1201 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1202 // We need at least one of them to be a temporary.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001203 if (!(IsTemp(rl_src2.reg.GetReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001204 rl_src1 = ForceTempWide(rl_src1);
Yevgeny Rouban91b6ffa2014-03-07 14:35:44 +07001205 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1206 } else {
1207 GenLongRegOrMemOp(rl_src2, rl_src1, op);
1208 StoreFinalValueWide(rl_dest, rl_src2);
1209 return;
Mark Mendelle02d48f2014-01-15 11:19:23 -08001210 }
Mark Mendelle02d48f2014-01-15 11:19:23 -08001211 } else {
1212 // Need LHS to be the temp.
1213 rl_src1 = ForceTempWide(rl_src1);
1214 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1215 }
1216
1217 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001218}
1219
Mark Mendelle02d48f2014-01-15 11:19:23 -08001220void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001221 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001222 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1223}
1224
1225void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1226 RegLocation rl_src1, RegLocation rl_src2) {
1227 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1228}
1229
1230void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1231 RegLocation rl_src1, RegLocation rl_src2) {
1232 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1233}
1234
1235void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1236 RegLocation rl_src1, RegLocation rl_src2) {
1237 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1238}
1239
1240void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1241 RegLocation rl_src1, RegLocation rl_src2) {
1242 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001243}
1244
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001245void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001246 rl_src = LoadValueWide(rl_src, kCoreReg);
1247 RegLocation rl_result = ForceTempWide(rl_src);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001248 if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1249 ((rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001250 // The registers are the same, so we would clobber it before the use.
1251 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001252 OpRegCopy(temp_reg, rl_result.reg.GetReg());
1253 rl_result.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001254 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001255 OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_result.reg.GetReg()); // rLow = -rLow
1256 OpRegImm(kOpAdc, rl_result.reg.GetHighReg(), 0); // rHigh = rHigh + CF
1257 OpRegReg(kOpNeg, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg()); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001258 StoreValueWide(rl_dest, rl_result);
1259}
1260
Ian Rogers468532e2013-08-05 10:56:33 -07001261void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001262 X86OpCode opcode = kX86Bkpt;
1263 switch (op) {
1264 case kOpCmp: opcode = kX86Cmp32RT; break;
1265 case kOpMov: opcode = kX86Mov32RT; break;
1266 default:
1267 LOG(FATAL) << "Bad opcode: " << op;
1268 break;
1269 }
Ian Rogers468532e2013-08-05 10:56:33 -07001270 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001271}
1272
1273/*
1274 * Generate array load
1275 */
1276void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001277 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001278 RegisterClass reg_class = oat_reg_class_by_size(size);
1279 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001280 RegLocation rl_result;
1281 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001282
Mark Mendell343adb52013-12-18 06:02:17 -08001283 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001284 if (size == kLong || size == kDouble) {
1285 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1286 } else {
1287 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1288 }
1289
Mark Mendell343adb52013-12-18 06:02:17 -08001290 bool constant_index = rl_index.is_const;
1291 int32_t constant_index_value = 0;
1292 if (!constant_index) {
1293 rl_index = LoadValue(rl_index, kCoreReg);
1294 } else {
1295 constant_index_value = mir_graph_->ConstantValue(rl_index);
1296 // If index is constant, just fold it into the data offset
1297 data_offset += constant_index_value << scale;
1298 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001299 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001300 }
1301
Brian Carlstrom7940e442013-07-12 13:46:57 -07001302 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001303 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001304
1305 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001306 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001307 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001308 constant_index_value, kThrowConstantArrayBounds);
1309 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001310 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001311 len_offset, kThrowArrayBounds);
1312 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001313 }
Mark Mendell343adb52013-12-18 06:02:17 -08001314 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001315 if ((size == kLong) || (size == kDouble)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001316 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_result.reg.GetReg(),
1317 rl_result.reg.GetHighReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001318 StoreValueWide(rl_dest, rl_result);
1319 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001320 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale,
1321 data_offset, rl_result.reg.GetReg(), INVALID_REG, size,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001322 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001323 StoreValue(rl_dest, rl_result);
1324 }
1325}
1326
1327/*
1328 * Generate array store
1329 *
1330 */
1331void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001332 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001333 RegisterClass reg_class = oat_reg_class_by_size(size);
1334 int len_offset = mirror::Array::LengthOffset().Int32Value();
1335 int data_offset;
1336
1337 if (size == kLong || size == kDouble) {
1338 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1339 } else {
1340 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1341 }
1342
1343 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001344 bool constant_index = rl_index.is_const;
1345 int32_t constant_index_value = 0;
1346 if (!constant_index) {
1347 rl_index = LoadValue(rl_index, kCoreReg);
1348 } else {
1349 // If index is constant, just fold it into the data offset
1350 constant_index_value = mir_graph_->ConstantValue(rl_index);
1351 data_offset += constant_index_value << scale;
1352 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001353 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001354 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001355
1356 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001357 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001358
1359 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001360 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001361 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001362 constant_index_value, kThrowConstantArrayBounds);
1363 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001364 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001365 len_offset, kThrowArrayBounds);
1366 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001367 }
1368 if ((size == kLong) || (size == kDouble)) {
1369 rl_src = LoadValueWide(rl_src, reg_class);
1370 } else {
1371 rl_src = LoadValue(rl_src, reg_class);
1372 }
1373 // If the src reg can't be byte accessed, move it to a temp first.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001374 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001375 int temp = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001376 OpRegCopy(temp, rl_src.reg.GetReg());
1377 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, temp,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001378 INVALID_REG, size, INVALID_SREG);
1379 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001380 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_src.reg.GetReg(),
1381 rl_src.wide ? rl_src.reg.GetHighReg() : INVALID_REG, size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001382 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001383 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001384 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001385 if (!constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001386 FreeTemp(rl_index.reg.GetReg());
Mark Mendell343adb52013-12-18 06:02:17 -08001387 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001388 MarkGCCard(rl_src.reg.GetReg(), rl_array.reg.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001389 }
1390}
1391
Mark Mendell4708dcd2014-01-22 09:05:18 -08001392RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1393 RegLocation rl_src, int shift_amount) {
1394 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1395 switch (opcode) {
1396 case Instruction::SHL_LONG:
1397 case Instruction::SHL_LONG_2ADDR:
1398 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1399 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001400 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1401 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001402 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001403 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1404 FreeTemp(rl_src.reg.GetHighReg());
1405 NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1406 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001407 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001408 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1409 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1410 NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), shift_amount);
1411 NewLIR2(kX86Sal32RI, rl_result.reg.GetReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001412 }
1413 break;
1414 case Instruction::SHR_LONG:
1415 case Instruction::SHR_LONG_2ADDR:
1416 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001417 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1418 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1419 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001420 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001421 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1422 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1423 NewLIR2(kX86Sar32RI, rl_result.reg.GetReg(), shift_amount - 32);
1424 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001425 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001426 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1427 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1428 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1429 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001430 }
1431 break;
1432 case Instruction::USHR_LONG:
1433 case Instruction::USHR_LONG_2ADDR:
1434 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001435 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1436 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001437 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001438 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1439 NewLIR2(kX86Shr32RI, rl_result.reg.GetReg(), shift_amount - 32);
1440 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001441 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001442 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1443 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1444 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1445 NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001446 }
1447 break;
1448 default:
1449 LOG(FATAL) << "Unexpected case";
1450 }
1451 return rl_result;
1452}
1453
Brian Carlstrom7940e442013-07-12 13:46:57 -07001454void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001455 RegLocation rl_src, RegLocation rl_shift) {
1456 // Per spec, we only care about low 6 bits of shift amount.
1457 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1458 if (shift_amount == 0) {
1459 rl_src = LoadValueWide(rl_src, kCoreReg);
1460 StoreValueWide(rl_dest, rl_src);
1461 return;
1462 } else if (shift_amount == 1 &&
1463 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1464 // Need to handle this here to avoid calling StoreValueWide twice.
1465 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1466 return;
1467 }
1468 if (BadOverlap(rl_src, rl_dest)) {
1469 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1470 return;
1471 }
1472 rl_src = LoadValueWide(rl_src, kCoreReg);
1473 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1474 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001475}
1476
1477void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001478 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001479 switch (opcode) {
1480 case Instruction::ADD_LONG:
1481 case Instruction::AND_LONG:
1482 case Instruction::OR_LONG:
1483 case Instruction::XOR_LONG:
1484 if (rl_src2.is_const) {
1485 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1486 } else {
1487 DCHECK(rl_src1.is_const);
1488 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1489 }
1490 break;
1491 case Instruction::SUB_LONG:
1492 case Instruction::SUB_LONG_2ADDR:
1493 if (rl_src2.is_const) {
1494 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1495 } else {
1496 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1497 }
1498 break;
1499 case Instruction::ADD_LONG_2ADDR:
1500 case Instruction::OR_LONG_2ADDR:
1501 case Instruction::XOR_LONG_2ADDR:
1502 case Instruction::AND_LONG_2ADDR:
1503 if (rl_src2.is_const) {
1504 GenLongImm(rl_dest, rl_src2, opcode);
1505 } else {
1506 DCHECK(rl_src1.is_const);
1507 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1508 }
1509 break;
1510 default:
1511 // Default - bail to non-const handler.
1512 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1513 break;
1514 }
1515}
1516
1517bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1518 switch (op) {
1519 case Instruction::AND_LONG_2ADDR:
1520 case Instruction::AND_LONG:
1521 return value == -1;
1522 case Instruction::OR_LONG:
1523 case Instruction::OR_LONG_2ADDR:
1524 case Instruction::XOR_LONG:
1525 case Instruction::XOR_LONG_2ADDR:
1526 return value == 0;
1527 default:
1528 return false;
1529 }
1530}
1531
1532X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1533 bool is_high_op) {
1534 bool rhs_in_mem = rhs.location != kLocPhysReg;
1535 bool dest_in_mem = dest.location != kLocPhysReg;
1536 DCHECK(!rhs_in_mem || !dest_in_mem);
1537 switch (op) {
1538 case Instruction::ADD_LONG:
1539 case Instruction::ADD_LONG_2ADDR:
1540 if (dest_in_mem) {
1541 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1542 } else if (rhs_in_mem) {
1543 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1544 }
1545 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1546 case Instruction::SUB_LONG:
1547 case Instruction::SUB_LONG_2ADDR:
1548 if (dest_in_mem) {
1549 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1550 } else if (rhs_in_mem) {
1551 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1552 }
1553 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1554 case Instruction::AND_LONG_2ADDR:
1555 case Instruction::AND_LONG:
1556 if (dest_in_mem) {
1557 return kX86And32MR;
1558 }
1559 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1560 case Instruction::OR_LONG:
1561 case Instruction::OR_LONG_2ADDR:
1562 if (dest_in_mem) {
1563 return kX86Or32MR;
1564 }
1565 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1566 case Instruction::XOR_LONG:
1567 case Instruction::XOR_LONG_2ADDR:
1568 if (dest_in_mem) {
1569 return kX86Xor32MR;
1570 }
1571 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1572 default:
1573 LOG(FATAL) << "Unexpected opcode: " << op;
1574 return kX86Add32RR;
1575 }
1576}
1577
1578X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1579 int32_t value) {
1580 bool in_mem = loc.location != kLocPhysReg;
1581 bool byte_imm = IS_SIMM8(value);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001582 DCHECK(in_mem || !IsFpReg(loc.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001583 switch (op) {
1584 case Instruction::ADD_LONG:
1585 case Instruction::ADD_LONG_2ADDR:
1586 if (byte_imm) {
1587 if (in_mem) {
1588 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1589 }
1590 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1591 }
1592 if (in_mem) {
1593 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1594 }
1595 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1596 case Instruction::SUB_LONG:
1597 case Instruction::SUB_LONG_2ADDR:
1598 if (byte_imm) {
1599 if (in_mem) {
1600 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1601 }
1602 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1603 }
1604 if (in_mem) {
1605 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1606 }
1607 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1608 case Instruction::AND_LONG_2ADDR:
1609 case Instruction::AND_LONG:
1610 if (byte_imm) {
1611 return in_mem ? kX86And32MI8 : kX86And32RI8;
1612 }
1613 return in_mem ? kX86And32MI : kX86And32RI;
1614 case Instruction::OR_LONG:
1615 case Instruction::OR_LONG_2ADDR:
1616 if (byte_imm) {
1617 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1618 }
1619 return in_mem ? kX86Or32MI : kX86Or32RI;
1620 case Instruction::XOR_LONG:
1621 case Instruction::XOR_LONG_2ADDR:
1622 if (byte_imm) {
1623 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1624 }
1625 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1626 default:
1627 LOG(FATAL) << "Unexpected opcode: " << op;
1628 return kX86Add32MI;
1629 }
1630}
1631
1632void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1633 DCHECK(rl_src.is_const);
1634 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1635 int32_t val_lo = Low32Bits(val);
1636 int32_t val_hi = High32Bits(val);
1637 rl_dest = UpdateLocWide(rl_dest);
1638
1639 // Can we just do this into memory?
1640 if ((rl_dest.location == kLocDalvikFrame) ||
1641 (rl_dest.location == kLocCompilerTemp)) {
1642 int rBase = TargetReg(kSp);
1643 int displacement = SRegOffset(rl_dest.s_reg_low);
1644
1645 if (!IsNoOp(op, val_lo)) {
1646 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1647 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1648 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1649 false /* is_load */, true /* is64bit */);
1650 }
1651 if (!IsNoOp(op, val_hi)) {
1652 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1653 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1654 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1655 false /* is_load */, true /* is64bit */);
1656 }
1657 return;
1658 }
1659
1660 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1661 DCHECK_EQ(rl_result.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001662 DCHECK(!IsFpReg(rl_result.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001663
1664 if (!IsNoOp(op, val_lo)) {
1665 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001666 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001667 }
1668 if (!IsNoOp(op, val_hi)) {
1669 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001670 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001671 }
1672 StoreValueWide(rl_dest, rl_result);
1673}
1674
1675void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1676 RegLocation rl_src2, Instruction::Code op) {
1677 DCHECK(rl_src2.is_const);
1678 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1679 int32_t val_lo = Low32Bits(val);
1680 int32_t val_hi = High32Bits(val);
1681 rl_dest = UpdateLocWide(rl_dest);
1682 rl_src1 = UpdateLocWide(rl_src1);
1683
1684 // Can we do this directly into the destination registers?
1685 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001686 rl_dest.reg.GetReg() == rl_src1.reg.GetReg() && rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1687 !IsFpReg(rl_dest.reg.GetReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001688 if (!IsNoOp(op, val_lo)) {
1689 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001690 NewLIR2(x86op, rl_dest.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001691 }
1692 if (!IsNoOp(op, val_hi)) {
1693 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001694 NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001695 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001696
1697 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001698 return;
1699 }
1700
1701 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1702 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1703
1704 // We need the values to be in a temporary
1705 RegLocation rl_result = ForceTempWide(rl_src1);
1706 if (!IsNoOp(op, val_lo)) {
1707 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001708 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001709 }
1710 if (!IsNoOp(op, val_hi)) {
1711 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001712 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001713 }
1714
1715 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001716}
1717
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001718// For final classes there are no sub-classes to check and so we can answer the instance-of
1719// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1720void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1721 RegLocation rl_dest, RegLocation rl_src) {
1722 RegLocation object = LoadValue(rl_src, kCoreReg);
1723 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001724 int result_reg = rl_result.reg.GetReg();
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001725
1726 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001727 if (result_reg == object.reg.GetReg() || result_reg >= 4) {
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001728 result_reg = AllocTypedTemp(false, kCoreReg);
1729 DCHECK_LT(result_reg, 4);
1730 }
1731
1732 // Assume that there is no match.
1733 LoadConstant(result_reg, 0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001734 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001735
1736 int check_class = AllocTypedTemp(false, kCoreReg);
1737
1738 // If Method* is already in a register, we can save a copy.
1739 RegLocation rl_method = mir_graph_->GetMethodLoc();
1740 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1741 (sizeof(mirror::Class*) * type_idx);
1742
1743 if (rl_method.location == kLocPhysReg) {
1744 if (use_declaring_class) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001745 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001746 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1747 check_class);
1748 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001749 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001750 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1751 check_class);
1752 LoadWordDisp(check_class, offset_of_type, check_class);
1753 }
1754 } else {
1755 LoadCurrMethodDirect(check_class);
1756 if (use_declaring_class) {
1757 LoadWordDisp(check_class,
1758 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1759 check_class);
1760 } else {
1761 LoadWordDisp(check_class,
1762 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1763 check_class);
1764 LoadWordDisp(check_class, offset_of_type, check_class);
1765 }
1766 }
1767
1768 // Compare the computed class to the class in the object.
1769 DCHECK_EQ(object.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001770 OpRegMem(kOpCmp, check_class, object.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001771 mirror::Object::ClassOffset().Int32Value());
1772
1773 // Set the low byte of the result to 0 or 1 from the compare condition code.
1774 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1775
1776 LIR* target = NewLIR0(kPseudoTargetLabel);
1777 null_branchover->target = target;
1778 FreeTemp(check_class);
1779 if (IsTemp(result_reg)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001780 OpRegCopy(rl_result.reg.GetReg(), result_reg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001781 FreeTemp(result_reg);
1782 }
1783 StoreValue(rl_dest, rl_result);
1784}
1785
Mark Mendell6607d972014-02-10 06:54:18 -08001786void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1787 bool type_known_abstract, bool use_declaring_class,
1788 bool can_assume_type_is_in_dex_cache,
1789 uint32_t type_idx, RegLocation rl_dest,
1790 RegLocation rl_src) {
1791 FlushAllRegs();
1792 // May generate a call - use explicit registers.
1793 LockCallTemps();
1794 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1795 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1796 // Reference must end up in kArg0.
1797 if (needs_access_check) {
1798 // Check we have access to type_idx and if not throw IllegalAccessError,
1799 // Caller function returns Class* in kArg0.
1800 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1801 type_idx, true);
1802 OpRegCopy(class_reg, TargetReg(kRet0));
1803 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1804 } else if (use_declaring_class) {
1805 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1806 LoadWordDisp(TargetReg(kArg1),
1807 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1808 } else {
1809 // Load dex cache entry into class_reg (kArg2).
1810 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1811 LoadWordDisp(TargetReg(kArg1),
1812 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1813 int32_t offset_of_type =
1814 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1815 * type_idx);
1816 LoadWordDisp(class_reg, offset_of_type, class_reg);
1817 if (!can_assume_type_is_in_dex_cache) {
1818 // Need to test presence of type in dex cache at runtime.
1819 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1820 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1821 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1822 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1823 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1824 // Rejoin code paths
1825 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1826 hop_branch->target = hop_target;
1827 }
1828 }
1829 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1830 RegLocation rl_result = GetReturn(false);
1831
1832 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001833 DCHECK_LT(rl_result.reg.GetReg(), 4);
Mark Mendell6607d972014-02-10 06:54:18 -08001834
1835 // Is the class NULL?
1836 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1837
1838 /* Load object->klass_. */
1839 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1840 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1841 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1842 LIR* branchover = nullptr;
1843 if (type_known_final) {
1844 // Ensure top 3 bytes of result are 0.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001845 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell6607d972014-02-10 06:54:18 -08001846 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1847 // Set the low byte of the result to 0 or 1 from the compare condition code.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001848 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
Mark Mendell6607d972014-02-10 06:54:18 -08001849 } else {
1850 if (!type_known_abstract) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001851 LoadConstant(rl_result.reg.GetReg(), 1); // Assume result succeeds.
Mark Mendell6607d972014-02-10 06:54:18 -08001852 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1853 }
1854 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1855 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1856 }
1857 // TODO: only clobber when type isn't final?
1858 ClobberCallerSave();
1859 /* Branch targets here. */
1860 LIR* target = NewLIR0(kPseudoTargetLabel);
1861 StoreValue(rl_dest, rl_result);
1862 branch1->target = target;
1863 if (branchover != nullptr) {
1864 branchover->target = target;
1865 }
1866}
1867
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001868void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1869 RegLocation rl_lhs, RegLocation rl_rhs) {
1870 OpKind op = kOpBkpt;
1871 bool is_div_rem = false;
1872 bool unary = false;
1873 bool shift_op = false;
1874 bool is_two_addr = false;
1875 RegLocation rl_result;
1876 switch (opcode) {
1877 case Instruction::NEG_INT:
1878 op = kOpNeg;
1879 unary = true;
1880 break;
1881 case Instruction::NOT_INT:
1882 op = kOpMvn;
1883 unary = true;
1884 break;
1885 case Instruction::ADD_INT_2ADDR:
1886 is_two_addr = true;
1887 // Fallthrough
1888 case Instruction::ADD_INT:
1889 op = kOpAdd;
1890 break;
1891 case Instruction::SUB_INT_2ADDR:
1892 is_two_addr = true;
1893 // Fallthrough
1894 case Instruction::SUB_INT:
1895 op = kOpSub;
1896 break;
1897 case Instruction::MUL_INT_2ADDR:
1898 is_two_addr = true;
1899 // Fallthrough
1900 case Instruction::MUL_INT:
1901 op = kOpMul;
1902 break;
1903 case Instruction::DIV_INT_2ADDR:
1904 is_two_addr = true;
1905 // Fallthrough
1906 case Instruction::DIV_INT:
1907 op = kOpDiv;
1908 is_div_rem = true;
1909 break;
1910 /* NOTE: returns in kArg1 */
1911 case Instruction::REM_INT_2ADDR:
1912 is_two_addr = true;
1913 // Fallthrough
1914 case Instruction::REM_INT:
1915 op = kOpRem;
1916 is_div_rem = true;
1917 break;
1918 case Instruction::AND_INT_2ADDR:
1919 is_two_addr = true;
1920 // Fallthrough
1921 case Instruction::AND_INT:
1922 op = kOpAnd;
1923 break;
1924 case Instruction::OR_INT_2ADDR:
1925 is_two_addr = true;
1926 // Fallthrough
1927 case Instruction::OR_INT:
1928 op = kOpOr;
1929 break;
1930 case Instruction::XOR_INT_2ADDR:
1931 is_two_addr = true;
1932 // Fallthrough
1933 case Instruction::XOR_INT:
1934 op = kOpXor;
1935 break;
1936 case Instruction::SHL_INT_2ADDR:
1937 is_two_addr = true;
1938 // Fallthrough
1939 case Instruction::SHL_INT:
1940 shift_op = true;
1941 op = kOpLsl;
1942 break;
1943 case Instruction::SHR_INT_2ADDR:
1944 is_two_addr = true;
1945 // Fallthrough
1946 case Instruction::SHR_INT:
1947 shift_op = true;
1948 op = kOpAsr;
1949 break;
1950 case Instruction::USHR_INT_2ADDR:
1951 is_two_addr = true;
1952 // Fallthrough
1953 case Instruction::USHR_INT:
1954 shift_op = true;
1955 op = kOpLsr;
1956 break;
1957 default:
1958 LOG(FATAL) << "Invalid word arith op: " << opcode;
1959 }
1960
1961 // Can we convert to a two address instruction?
1962 if (!is_two_addr &&
1963 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1964 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1965 is_two_addr = true;
1966 }
1967
1968 // Get the div/rem stuff out of the way.
1969 if (is_div_rem) {
1970 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1971 StoreValue(rl_dest, rl_result);
1972 return;
1973 }
1974
1975 if (unary) {
1976 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1977 rl_result = UpdateLoc(rl_dest);
1978 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001979 OpRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001980 } else {
1981 if (shift_op) {
1982 // X86 doesn't require masking and must use ECX.
1983 int t_reg = TargetReg(kCount); // rCX
1984 LoadValueDirectFixed(rl_rhs, t_reg);
1985 if (is_two_addr) {
1986 // Can we do this directly into memory?
1987 rl_result = UpdateLoc(rl_dest);
1988 rl_rhs = LoadValue(rl_rhs, kCoreReg);
1989 if (rl_result.location != kLocPhysReg) {
1990 // Okay, we can do this into memory
1991 OpMemReg(op, rl_result, t_reg);
1992 FreeTemp(t_reg);
1993 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001994 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001995 // Can do this directly into the result register
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001996 OpRegReg(op, rl_result.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001997 FreeTemp(t_reg);
1998 StoreFinalValue(rl_dest, rl_result);
1999 return;
2000 }
2001 }
2002 // Three address form, or we can't do directly.
2003 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2004 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002005 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002006 FreeTemp(t_reg);
2007 } else {
2008 // Multiply is 3 operand only (sort of).
2009 if (is_two_addr && op != kOpMul) {
2010 // Can we do this directly into memory?
2011 rl_result = UpdateLoc(rl_dest);
2012 if (rl_result.location == kLocPhysReg) {
2013 // Can we do this from memory directly?
2014 rl_rhs = UpdateLoc(rl_rhs);
2015 if (rl_rhs.location != kLocPhysReg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002016 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002017 StoreFinalValue(rl_dest, rl_result);
2018 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002019 } else if (!IsFpReg(rl_rhs.reg.GetReg())) {
2020 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002021 StoreFinalValue(rl_dest, rl_result);
2022 return;
2023 }
2024 }
2025 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2026 if (rl_result.location != kLocPhysReg) {
2027 // Okay, we can do this into memory.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002028 OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002029 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002030 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002031 // Can do this directly into the result register.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002032 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002033 StoreFinalValue(rl_dest, rl_result);
2034 return;
2035 } else {
2036 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2037 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002038 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002039 }
2040 } else {
2041 // Try to use reg/memory instructions.
2042 rl_lhs = UpdateLoc(rl_lhs);
2043 rl_rhs = UpdateLoc(rl_rhs);
2044 // We can't optimize with FP registers.
2045 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2046 // Something is difficult, so fall back to the standard case.
2047 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2048 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2049 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002050 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002051 } else {
2052 // We can optimize by moving to result and using memory operands.
2053 if (rl_rhs.location != kLocPhysReg) {
2054 // Force LHS into result.
Serguei Katkov66da1362014-03-14 13:33:33 +07002055 // We should be careful with order here
2056 // If rl_dest and rl_lhs points to the same VR we should load first
2057 // If the are different we should find a register first for dest
2058 if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2059 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2060 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2061 } else {
2062 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2063 LoadValueDirect(rl_lhs, rl_result.reg.GetReg());
2064 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002065 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002066 } else if (rl_lhs.location != kLocPhysReg) {
2067 // RHS is in a register; LHS is in memory.
2068 if (op != kOpSub) {
2069 // Force RHS into result and operate on memory.
2070 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002071 OpRegCopy(rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2072 OpRegMem(op, rl_result.reg.GetReg(), rl_lhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002073 } else {
2074 // Subtraction isn't commutative.
2075 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2076 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2077 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002078 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002079 }
2080 } else {
2081 // Both are in registers.
2082 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2083 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2084 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002085 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002086 }
2087 }
2088 }
2089 }
2090 }
2091 StoreValue(rl_dest, rl_result);
2092}
2093
2094bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2095 // If we have non-core registers, then we can't do good things.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002096 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002097 return false;
2098 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002099 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002100 return false;
2101 }
2102
2103 // Everything will be fine :-).
2104 return true;
2105}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002106} // namespace art