blob: 35bdb0f2d771ca0a3259ba9c0964a0316d9ccf93 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
214
215 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
216 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
217 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
218 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
219 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
220 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
221 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
222 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
223 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
224 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
225
226#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
227 reg, reg_kind, reg_flags, \
228 mem, mem_kind, mem_flags, \
229 arr, arr_kind, arr_flags, imm, \
230 b_flags, hw_flags, w_flags, \
231 b_format, hw_format, w_format) \
232{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
233{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
234{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
235{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
236{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
237{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
238{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
239{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
240{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
241
242 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
243 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
244
Mark Mendell2bf31e62014-01-23 12:13:40 -0800245 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
246 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
247 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
248 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700249#undef UNARY_ENCODING_MAP
250
Mark Mendell2bf31e62014-01-23 12:13:40 -0800251 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000252 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
253 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
254 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100255
Brian Carlstrom7940e442013-07-12 13:46:57 -0700256#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
257{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
258{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
259{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
260
261 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
262 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
263 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
264
265 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
266 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
267 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
268
269 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
270 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
271 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
276 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
277 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
279 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800291 EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700292
293 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
294 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800295 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000296 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700297
298 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
299 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
300 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
301 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
302
303 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
304 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
305 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
306
307 // TODO: load/store?
308 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
309 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
310
311 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
312 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
313
314 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
315 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
316 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700317 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
318 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000319 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
320 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700321
322 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
323 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
324 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
325 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
326#undef EXT_0F_ENCODING_MAP
327
328 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
329 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
330 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
331 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
332 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
333 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
334 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
335 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
336 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700337 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700338
339 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
340 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
341 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
342};
343
344static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
345 size_t size = 0;
346 if (entry->skeleton.prefix1 > 0) {
347 ++size;
348 if (entry->skeleton.prefix2 > 0) {
349 ++size;
350 }
351 }
352 ++size; // opcode
353 if (entry->skeleton.opcode == 0x0F) {
354 ++size;
355 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
356 ++size;
357 }
358 }
359 ++size; // modrm
360 if (has_sib || base == rX86_SP) {
361 // SP requires a SIB byte.
362 ++size;
363 }
364 if (displacement != 0 || base == rBP) {
365 // BP requires an explicit displacement, even when it's 0.
366 if (entry->opcode != kX86Lea32RA) {
367 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
368 }
369 size += IS_SIMM8(displacement) ? 1 : 4;
370 }
371 size += entry->skeleton.immediate_bytes;
372 return size;
373}
374
375int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700376 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700377 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
378 switch (entry->kind) {
379 case kData:
380 return 4; // 4 bytes of data
381 case kNop:
382 return lir->operands[0]; // length of nop is sole operand
383 case kNullary:
384 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100385 case kRegOpcode: // lir operands - 0: reg
386 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700387 case kReg: // lir operands - 0: reg
388 return ComputeSize(entry, 0, 0, false);
389 case kMem: // lir operands - 0: base, 1: disp
390 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
391 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
392 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
393 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
394 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
395 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
396 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
397 case kThreadReg: // lir operands - 0: disp, 1: reg
398 return ComputeSize(entry, 0, lir->operands[0], false);
399 case kRegReg:
400 return ComputeSize(entry, 0, 0, false);
401 case kRegRegStore:
402 return ComputeSize(entry, 0, 0, false);
403 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
404 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
405 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
406 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
407 case kRegThread: // lir operands - 0: reg, 1: disp
408 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
409 case kRegImm: { // lir operands - 0: reg, 1: immediate
410 size_t size = ComputeSize(entry, 0, 0, false);
411 if (entry->skeleton.ax_opcode == 0) {
412 return size;
413 } else {
414 // AX opcodes don't require the modrm byte.
415 int reg = lir->operands[0];
416 return size - (reg == rAX ? 1 : 0);
417 }
418 }
419 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
420 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
421 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
422 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
423 case kThreadImm: // lir operands - 0: disp, 1: imm
424 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
425 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
426 return ComputeSize(entry, 0, 0, false);
427 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
428 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
429 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
430 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
431 case kMovRegImm: // lir operands - 0: reg, 1: immediate
432 return 1 + entry->skeleton.immediate_bytes;
433 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
434 // Shift by immediate one has a shorter opcode.
435 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
436 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
437 // Shift by immediate one has a shorter opcode.
438 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
439 (lir->operands[2] == 1 ? 1 : 0);
440 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
441 // Shift by immediate one has a shorter opcode.
442 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
443 (lir->operands[4] == 1 ? 1 : 0);
444 case kShiftRegCl:
445 return ComputeSize(entry, 0, 0, false);
446 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
447 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
448 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
449 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
450 case kRegCond: // lir operands - 0: reg, 1: cond
451 return ComputeSize(entry, 0, 0, false);
452 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
453 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
454 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
455 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800456 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
457 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700458 case kJcc:
459 if (lir->opcode == kX86Jcc8) {
460 return 2; // opcode + rel8
461 } else {
462 DCHECK(lir->opcode == kX86Jcc32);
463 return 6; // 2 byte opcode + rel32
464 }
465 case kJmp:
466 if (lir->opcode == kX86Jmp8) {
467 return 2; // opcode + rel8
468 } else if (lir->opcode == kX86Jmp32) {
469 return 5; // opcode + rel32
470 } else {
471 DCHECK(lir->opcode == kX86JmpR);
472 return 2; // opcode + modrm
473 }
474 case kCall:
475 switch (lir->opcode) {
476 case kX86CallR: return 2; // opcode modrm
477 case kX86CallM: // lir operands - 0: base, 1: disp
478 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
479 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
480 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
481 case kX86CallT: // lir operands - 0: disp
482 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
483 default:
484 break;
485 }
486 break;
487 case kPcRel:
488 if (entry->opcode == kX86PcRelLoadRA) {
489 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
490 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
491 } else {
492 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700493 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700494 }
495 case kMacro:
496 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
497 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
498 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
499 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
500 default:
501 break;
502 }
503 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
504 return 0;
505}
506
Vladimir Marko057c74a2013-12-03 15:20:45 +0000507void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
508 if (entry->skeleton.prefix1 != 0) {
509 code_buffer_.push_back(entry->skeleton.prefix1);
510 if (entry->skeleton.prefix2 != 0) {
511 code_buffer_.push_back(entry->skeleton.prefix2);
512 }
513 } else {
514 DCHECK_EQ(0, entry->skeleton.prefix2);
515 }
516}
517
518void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
519 code_buffer_.push_back(entry->skeleton.opcode);
520 if (entry->skeleton.opcode == 0x0F) {
521 code_buffer_.push_back(entry->skeleton.extra_opcode1);
522 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
523 code_buffer_.push_back(entry->skeleton.extra_opcode2);
524 } else {
525 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
526 }
527 } else {
528 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
529 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
530 }
531}
532
533void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
534 EmitPrefix(entry);
535 EmitOpcode(entry);
536}
537
Brian Carlstrom7940e442013-07-12 13:46:57 -0700538static uint8_t ModrmForDisp(int base, int disp) {
539 // BP requires an explicit disp, so do not omit it in the 0 case
540 if (disp == 0 && base != rBP) {
541 return 0;
542 } else if (IS_SIMM8(disp)) {
543 return 1;
544 } else {
545 return 2;
546 }
547}
548
Vladimir Marko057c74a2013-12-03 15:20:45 +0000549void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700550 // BP requires an explicit disp, so do not omit it in the 0 case
551 if (disp == 0 && base != rBP) {
552 return;
553 } else if (IS_SIMM8(disp)) {
554 code_buffer_.push_back(disp & 0xFF);
555 } else {
556 code_buffer_.push_back(disp & 0xFF);
557 code_buffer_.push_back((disp >> 8) & 0xFF);
558 code_buffer_.push_back((disp >> 16) & 0xFF);
559 code_buffer_.push_back((disp >> 24) & 0xFF);
560 }
561}
562
Vladimir Marko057c74a2013-12-03 15:20:45 +0000563void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
564 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700565 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000566 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700567 code_buffer_.push_back(modrm);
568 if (base == rX86_SP) {
569 // Special SIB for SP base
570 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
571 }
572 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700573}
574
Vladimir Marko057c74a2013-12-03 15:20:45 +0000575void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
576 int scale, int disp) {
577 DCHECK_LT(reg_or_opcode, 8);
578 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700579 code_buffer_.push_back(modrm);
580 DCHECK_LT(scale, 4);
581 DCHECK_LT(index, 8);
582 DCHECK_LT(base, 8);
583 uint8_t sib = (scale << 6) | (index << 3) | base;
584 code_buffer_.push_back(sib);
585 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700586}
587
Vladimir Marko057c74a2013-12-03 15:20:45 +0000588void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700589 switch (entry->skeleton.immediate_bytes) {
590 case 1:
591 DCHECK(IS_SIMM8(imm));
592 code_buffer_.push_back(imm & 0xFF);
593 break;
594 case 2:
595 DCHECK(IS_SIMM16(imm));
596 code_buffer_.push_back(imm & 0xFF);
597 code_buffer_.push_back((imm >> 8) & 0xFF);
598 break;
599 case 4:
600 code_buffer_.push_back(imm & 0xFF);
601 code_buffer_.push_back((imm >> 8) & 0xFF);
602 code_buffer_.push_back((imm >> 16) & 0xFF);
603 code_buffer_.push_back((imm >> 24) & 0xFF);
604 break;
605 default:
606 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
607 << ") for instruction: " << entry->name;
608 break;
609 }
610}
611
Vladimir Marko057c74a2013-12-03 15:20:45 +0000612void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
613 EmitPrefixAndOpcode(entry);
614 // There's no 3-byte instruction with +rd
615 DCHECK(entry->skeleton.opcode != 0x0F ||
616 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
617 DCHECK(!X86_FPREG(reg));
618 DCHECK_LT(reg, 8);
619 code_buffer_.back() += reg;
620 DCHECK_EQ(0, entry->skeleton.ax_opcode);
621 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
622}
623
624void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
625 EmitPrefixAndOpcode(entry);
626 if (X86_FPREG(reg)) {
627 reg = reg & X86_FP_REG_MASK;
628 }
629 if (reg >= 4) {
630 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
631 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
632 }
633 DCHECK_LT(reg, 8);
634 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
635 code_buffer_.push_back(modrm);
636 DCHECK_EQ(0, entry->skeleton.ax_opcode);
637 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
638}
639
640void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
641 EmitPrefix(entry);
642 code_buffer_.push_back(entry->skeleton.opcode);
643 DCHECK_NE(0x0F, entry->skeleton.opcode);
644 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
645 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
646 DCHECK_NE(rX86_SP, base);
647 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
648 DCHECK_EQ(0, entry->skeleton.ax_opcode);
649 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
650}
651
652void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
653 int scale, int disp) {
654 EmitPrefixAndOpcode(entry);
655 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
656 DCHECK_EQ(0, entry->skeleton.ax_opcode);
657 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
658}
659
660void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
661 uint8_t base, int disp, uint8_t reg) {
662 EmitPrefixAndOpcode(entry);
663 if (X86_FPREG(reg)) {
664 reg = reg & X86_FP_REG_MASK;
665 }
666 if (reg >= 4) {
667 DCHECK(strchr(entry->name, '8') == NULL ||
668 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
669 << entry->name << " " << static_cast<int>(reg)
670 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
671 }
672 EmitModrmDisp(reg, base, disp);
673 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
674 DCHECK_EQ(0, entry->skeleton.ax_opcode);
675 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
676}
677
678void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
679 uint8_t reg, uint8_t base, int disp) {
680 // Opcode will flip operands.
681 EmitMemReg(entry, base, disp, reg);
682}
683
684void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
685 int scale, int disp) {
686 EmitPrefixAndOpcode(entry);
687 if (X86_FPREG(reg)) {
688 reg = reg & X86_FP_REG_MASK;
689 }
690 EmitModrmSibDisp(reg, base, index, scale, disp);
691 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
692 DCHECK_EQ(0, entry->skeleton.ax_opcode);
693 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
694}
695
696void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
697 uint8_t reg) {
698 // Opcode will flip operands.
699 EmitRegArray(entry, reg, base, index, scale, disp);
700}
701
702void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
703 DCHECK_NE(entry->skeleton.prefix1, 0);
704 EmitPrefixAndOpcode(entry);
705 if (X86_FPREG(reg)) {
706 reg = reg & X86_FP_REG_MASK;
707 }
708 if (reg >= 4) {
709 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
710 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
711 }
712 DCHECK_LT(reg, 8);
713 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
714 code_buffer_.push_back(modrm);
715 code_buffer_.push_back(disp & 0xFF);
716 code_buffer_.push_back((disp >> 8) & 0xFF);
717 code_buffer_.push_back((disp >> 16) & 0xFF);
718 code_buffer_.push_back((disp >> 24) & 0xFF);
719 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
720 DCHECK_EQ(0, entry->skeleton.ax_opcode);
721 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
722}
723
724void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
725 EmitPrefixAndOpcode(entry);
726 if (X86_FPREG(reg1)) {
727 reg1 = reg1 & X86_FP_REG_MASK;
728 }
729 if (X86_FPREG(reg2)) {
730 reg2 = reg2 & X86_FP_REG_MASK;
731 }
732 DCHECK_LT(reg1, 8);
733 DCHECK_LT(reg2, 8);
734 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
735 code_buffer_.push_back(modrm);
736 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
737 DCHECK_EQ(0, entry->skeleton.ax_opcode);
738 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
739}
740
741void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
742 uint8_t reg1, uint8_t reg2, int32_t imm) {
743 EmitPrefixAndOpcode(entry);
744 if (X86_FPREG(reg1)) {
745 reg1 = reg1 & X86_FP_REG_MASK;
746 }
747 if (X86_FPREG(reg2)) {
748 reg2 = reg2 & X86_FP_REG_MASK;
749 }
750 DCHECK_LT(reg1, 8);
751 DCHECK_LT(reg2, 8);
752 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
753 code_buffer_.push_back(modrm);
754 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
755 DCHECK_EQ(0, entry->skeleton.ax_opcode);
756 EmitImm(entry, imm);
757}
758
Brian Carlstrom7940e442013-07-12 13:46:57 -0700759void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
760 if (entry->skeleton.prefix1 != 0) {
761 code_buffer_.push_back(entry->skeleton.prefix1);
762 if (entry->skeleton.prefix2 != 0) {
763 code_buffer_.push_back(entry->skeleton.prefix2);
764 }
765 } else {
766 DCHECK_EQ(0, entry->skeleton.prefix2);
767 }
768 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
769 code_buffer_.push_back(entry->skeleton.ax_opcode);
770 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000771 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700772 if (X86_FPREG(reg)) {
773 reg = reg & X86_FP_REG_MASK;
774 }
775 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
776 code_buffer_.push_back(modrm);
777 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000778 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700779}
780
Mark Mendell343adb52013-12-18 06:02:17 -0800781void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
782 EmitPrefixAndOpcode(entry);
783 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
784 DCHECK_EQ(0, entry->skeleton.ax_opcode);
785 EmitImm(entry, imm);
786}
787
Brian Carlstrom7940e442013-07-12 13:46:57 -0700788void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000789 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700790 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
791 code_buffer_.push_back(modrm);
792 code_buffer_.push_back(disp & 0xFF);
793 code_buffer_.push_back((disp >> 8) & 0xFF);
794 code_buffer_.push_back((disp >> 16) & 0xFF);
795 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000796 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700797 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
798}
799
800void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
801 DCHECK_LT(reg, 8);
802 code_buffer_.push_back(0xB8 + reg);
803 code_buffer_.push_back(imm & 0xFF);
804 code_buffer_.push_back((imm >> 8) & 0xFF);
805 code_buffer_.push_back((imm >> 16) & 0xFF);
806 code_buffer_.push_back((imm >> 24) & 0xFF);
807}
808
809void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000810 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700811 if (imm != 1) {
812 code_buffer_.push_back(entry->skeleton.opcode);
813 } else {
814 // Shorter encoding for 1 bit shift
815 code_buffer_.push_back(entry->skeleton.ax_opcode);
816 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000817 DCHECK_NE(0x0F, entry->skeleton.opcode);
818 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
819 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700820 if (reg >= 4) {
821 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
822 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
823 }
824 DCHECK_LT(reg, 8);
825 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
826 code_buffer_.push_back(modrm);
827 if (imm != 1) {
828 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
829 DCHECK(IS_SIMM8(imm));
830 code_buffer_.push_back(imm & 0xFF);
831 }
832}
833
834void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
835 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000836 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000838 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700839 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
840 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
841 DCHECK_LT(reg, 8);
842 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
843 code_buffer_.push_back(modrm);
844 DCHECK_EQ(0, entry->skeleton.ax_opcode);
845 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
846}
847
848void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
849 if (entry->skeleton.prefix1 != 0) {
850 code_buffer_.push_back(entry->skeleton.prefix1);
851 if (entry->skeleton.prefix2 != 0) {
852 code_buffer_.push_back(entry->skeleton.prefix2);
853 }
854 } else {
855 DCHECK_EQ(0, entry->skeleton.prefix2);
856 }
857 DCHECK_EQ(0, entry->skeleton.ax_opcode);
858 DCHECK_EQ(0x0F, entry->skeleton.opcode);
859 code_buffer_.push_back(0x0F);
860 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
861 code_buffer_.push_back(0x90 | condition);
862 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
863 DCHECK_LT(reg, 8);
864 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
865 code_buffer_.push_back(modrm);
866 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
867}
868
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800869void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
870 // Generate prefix and opcode without the condition
871 EmitPrefixAndOpcode(entry);
872
873 // Now add the condition. The last byte of opcode is the one that receives it.
874 DCHECK_LE(condition, 0xF);
875 code_buffer_.back() += condition;
876
877 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
878 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
879 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
880
881 // Check that registers requested for encoding are sane.
882 DCHECK_LT(reg1, 8);
883 DCHECK_LT(reg2, 8);
884
885 // For register to register encoding, the mod is 3.
886 const uint8_t mod = (3 << 6);
887
888 // Encode the ModR/M byte now.
889 const uint8_t modrm = mod | (reg1 << 3) | reg2;
890 code_buffer_.push_back(modrm);
891}
892
Brian Carlstrom7940e442013-07-12 13:46:57 -0700893void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
894 if (entry->opcode == kX86Jmp8) {
895 DCHECK(IS_SIMM8(rel));
896 code_buffer_.push_back(0xEB);
897 code_buffer_.push_back(rel & 0xFF);
898 } else if (entry->opcode == kX86Jmp32) {
899 code_buffer_.push_back(0xE9);
900 code_buffer_.push_back(rel & 0xFF);
901 code_buffer_.push_back((rel >> 8) & 0xFF);
902 code_buffer_.push_back((rel >> 16) & 0xFF);
903 code_buffer_.push_back((rel >> 24) & 0xFF);
904 } else {
905 DCHECK(entry->opcode == kX86JmpR);
906 code_buffer_.push_back(entry->skeleton.opcode);
907 uint8_t reg = static_cast<uint8_t>(rel);
908 DCHECK_LT(reg, 8);
909 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
910 code_buffer_.push_back(modrm);
911 }
912}
913
914void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
915 DCHECK_LT(cc, 16);
916 if (entry->opcode == kX86Jcc8) {
917 DCHECK(IS_SIMM8(rel));
918 code_buffer_.push_back(0x70 | cc);
919 code_buffer_.push_back(rel & 0xFF);
920 } else {
921 DCHECK(entry->opcode == kX86Jcc32);
922 code_buffer_.push_back(0x0F);
923 code_buffer_.push_back(0x80 | cc);
924 code_buffer_.push_back(rel & 0xFF);
925 code_buffer_.push_back((rel >> 8) & 0xFF);
926 code_buffer_.push_back((rel >> 16) & 0xFF);
927 code_buffer_.push_back((rel >> 24) & 0xFF);
928 }
929}
930
931void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000932 EmitPrefixAndOpcode(entry);
933 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700934 DCHECK_EQ(0, entry->skeleton.ax_opcode);
935 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
936}
937
938void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
939 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000940 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700941 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
942 code_buffer_.push_back(modrm);
943 code_buffer_.push_back(disp & 0xFF);
944 code_buffer_.push_back((disp >> 8) & 0xFF);
945 code_buffer_.push_back((disp >> 16) & 0xFF);
946 code_buffer_.push_back((disp >> 24) & 0xFF);
947 DCHECK_EQ(0, entry->skeleton.ax_opcode);
948 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
949}
950
951void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
952 int base_or_table, uint8_t index, int scale, int table_or_disp) {
953 int disp;
954 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700955 Mir2Lir::EmbeddedData *tab_rec =
956 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700957 disp = tab_rec->offset;
958 } else {
959 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700960 Mir2Lir::EmbeddedData *tab_rec =
961 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700962 disp = tab_rec->offset;
963 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000964 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700965 if (X86_FPREG(reg)) {
966 reg = reg & X86_FP_REG_MASK;
967 }
968 DCHECK_LT(reg, 8);
969 if (entry->opcode == kX86PcRelLoadRA) {
970 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000971 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700972 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
973 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
974 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
975 code_buffer_.push_back(modrm);
976 DCHECK_LT(scale, 4);
977 DCHECK_LT(index, 8);
978 DCHECK_LT(base_or_table, 8);
979 uint8_t base = static_cast<uint8_t>(base_or_table);
980 uint8_t sib = (scale << 6) | (index << 3) | base;
981 code_buffer_.push_back(sib);
982 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
983 } else {
984 code_buffer_.push_back(entry->skeleton.opcode + reg);
985 }
986 code_buffer_.push_back(disp & 0xFF);
987 code_buffer_.push_back((disp >> 8) & 0xFF);
988 code_buffer_.push_back((disp >> 16) & 0xFF);
989 code_buffer_.push_back((disp >> 24) & 0xFF);
990 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
991 DCHECK_EQ(0, entry->skeleton.ax_opcode);
992}
993
994void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
995 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
996 code_buffer_.push_back(0xE8); // call +0
997 code_buffer_.push_back(0);
998 code_buffer_.push_back(0);
999 code_buffer_.push_back(0);
1000 code_buffer_.push_back(0);
1001
1002 DCHECK_LT(reg, 8);
1003 code_buffer_.push_back(0x58 + reg); // pop reg
1004
1005 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1006}
1007
1008void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1009 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1010 << BuildInsnString(entry->fmt, lir, 0);
1011 for (int i = 0; i < GetInsnSize(lir); ++i) {
1012 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1013 }
1014}
1015
1016/*
1017 * Assemble the LIR into binary instruction format. Note that we may
1018 * discover that pc-relative displacements may not fit the selected
1019 * instruction. In those cases we will try to substitute a new code
1020 * sequence or request that the trace be shortened and retried.
1021 */
buzbee0d829482013-10-11 15:24:55 -07001022AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001023 LIR *lir;
1024 AssemblerStatus res = kSuccess; // Assume success
1025
1026 const bool kVerbosePcFixup = false;
1027 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001028 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001029 continue;
1030 }
1031
1032 if (lir->flags.is_nop) {
1033 continue;
1034 }
1035
buzbeeb48819d2013-09-14 16:15:25 -07001036 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001037 switch (lir->opcode) {
1038 case kX86Jcc8: {
1039 LIR *target_lir = lir->target;
1040 DCHECK(target_lir != NULL);
1041 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001042 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001043 if (IS_SIMM8(lir->operands[0])) {
1044 pc = lir->offset + 2 /* opcode + rel8 */;
1045 } else {
1046 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1047 }
buzbee0d829482013-10-11 15:24:55 -07001048 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001049 delta = target - pc;
1050 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1051 if (kVerbosePcFixup) {
1052 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1053 << " delta: " << delta << " old delta: " << lir->operands[0];
1054 }
1055 lir->opcode = kX86Jcc32;
1056 SetupResourceMasks(lir);
1057 res = kRetryAll;
1058 }
1059 if (kVerbosePcFixup) {
1060 LOG(INFO) << "Source:";
1061 DumpLIRInsn(lir, 0);
1062 LOG(INFO) << "Target:";
1063 DumpLIRInsn(target_lir, 0);
1064 LOG(INFO) << "Delta " << delta;
1065 }
1066 lir->operands[0] = delta;
1067 break;
1068 }
1069 case kX86Jcc32: {
1070 LIR *target_lir = lir->target;
1071 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001072 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1073 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001074 int delta = target - pc;
1075 if (kVerbosePcFixup) {
1076 LOG(INFO) << "Source:";
1077 DumpLIRInsn(lir, 0);
1078 LOG(INFO) << "Target:";
1079 DumpLIRInsn(target_lir, 0);
1080 LOG(INFO) << "Delta " << delta;
1081 }
1082 lir->operands[0] = delta;
1083 break;
1084 }
1085 case kX86Jmp8: {
1086 LIR *target_lir = lir->target;
1087 DCHECK(target_lir != NULL);
1088 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001089 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001090 if (IS_SIMM8(lir->operands[0])) {
1091 pc = lir->offset + 2 /* opcode + rel8 */;
1092 } else {
1093 pc = lir->offset + 5 /* opcode + rel32 */;
1094 }
buzbee0d829482013-10-11 15:24:55 -07001095 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001096 delta = target - pc;
1097 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1098 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001099 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001100 if (kVerbosePcFixup) {
1101 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1102 }
1103 res = kRetryAll;
1104 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1105 if (kVerbosePcFixup) {
1106 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1107 }
1108 lir->opcode = kX86Jmp32;
1109 SetupResourceMasks(lir);
1110 res = kRetryAll;
1111 }
1112 lir->operands[0] = delta;
1113 break;
1114 }
1115 case kX86Jmp32: {
1116 LIR *target_lir = lir->target;
1117 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001118 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1119 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001120 int delta = target - pc;
1121 lir->operands[0] = delta;
1122 break;
1123 }
1124 default:
1125 break;
1126 }
1127 }
1128
1129 /*
1130 * If one of the pc-relative instructions expanded we'll have
1131 * to make another pass. Don't bother to fully assemble the
1132 * instruction.
1133 */
1134 if (res != kSuccess) {
1135 continue;
1136 }
1137 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1138 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1139 size_t starting_cbuf_size = code_buffer_.size();
1140 switch (entry->kind) {
1141 case kData: // 4 bytes of data
1142 code_buffer_.push_back(lir->operands[0]);
1143 break;
1144 case kNullary: // 1 byte of opcode
1145 DCHECK_EQ(0, entry->skeleton.prefix1);
1146 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001147 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001148 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1149 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1150 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1151 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001152 case kRegOpcode: // lir operands - 0: reg
1153 EmitOpRegOpcode(entry, lir->operands[0]);
1154 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001155 case kReg: // lir operands - 0: reg
1156 EmitOpReg(entry, lir->operands[0]);
1157 break;
1158 case kMem: // lir operands - 0: base, 1: disp
1159 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1160 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001161 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1162 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1163 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001164 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1165 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1166 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001167 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1168 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1169 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001170 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1171 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1172 lir->operands[3], lir->operands[4]);
1173 break;
1174 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1175 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1176 break;
1177 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1178 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1179 lir->operands[3], lir->operands[4]);
1180 break;
1181 case kRegThread: // lir operands - 0: reg, 1: disp
1182 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1183 break;
1184 case kRegReg: // lir operands - 0: reg1, 1: reg2
1185 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1186 break;
1187 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1188 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1189 break;
1190 case kRegRegImm:
1191 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1192 break;
1193 case kRegImm: // lir operands - 0: reg, 1: immediate
1194 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1195 break;
1196 case kThreadImm: // lir operands - 0: disp, 1: immediate
1197 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1198 break;
1199 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1200 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1201 break;
1202 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1203 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1204 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001205 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001206 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1207 break;
1208 case kRegCond: // lir operands - 0: reg, 1: condition
1209 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1210 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001211 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1212 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1213 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001214 case kJmp: // lir operands - 0: rel
1215 EmitJmp(entry, lir->operands[0]);
1216 break;
1217 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1218 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1219 break;
1220 case kCall:
1221 switch (entry->opcode) {
1222 case kX86CallM: // lir operands - 0: base, 1: disp
1223 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1224 break;
1225 case kX86CallT: // lir operands - 0: disp
1226 EmitCallThread(entry, lir->operands[0]);
1227 break;
1228 default:
1229 EmitUnimplemented(entry, lir);
1230 break;
1231 }
1232 break;
1233 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1234 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1235 lir->operands[3], lir->operands[4]);
1236 break;
1237 case kMacro:
1238 EmitMacro(entry, lir->operands[0], lir->offset);
1239 break;
1240 default:
1241 EmitUnimplemented(entry, lir);
1242 break;
1243 }
1244 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1245 code_buffer_.size() - starting_cbuf_size)
1246 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1247 }
1248 return res;
1249}
1250
buzbeeb48819d2013-09-14 16:15:25 -07001251// LIR offset assignment.
1252// TODO: consolidate w/ Arm assembly mechanism.
1253int X86Mir2Lir::AssignInsnOffsets() {
1254 LIR* lir;
1255 int offset = 0;
1256
1257 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1258 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001259 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001260 if (!lir->flags.is_nop) {
1261 offset += lir->flags.size;
1262 }
1263 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1264 if (offset & 0x2) {
1265 offset += 2;
1266 lir->operands[0] = 1;
1267 } else {
1268 lir->operands[0] = 0;
1269 }
1270 }
1271 /* Pseudo opcodes don't consume space */
1272 }
1273 return offset;
1274}
1275
1276/*
1277 * Walk the compilation unit and assign offsets to instructions
1278 * and literals and compute the total size of the compiled unit.
1279 * TODO: consolidate w/ Arm assembly mechanism.
1280 */
1281void X86Mir2Lir::AssignOffsets() {
1282 int offset = AssignInsnOffsets();
1283
1284 /* Const values have to be word aligned */
1285 offset = (offset + 3) & ~3;
1286
1287 /* Set up offsets for literals */
1288 data_offset_ = offset;
1289
1290 offset = AssignLiteralOffset(offset);
1291
1292 offset = AssignSwitchTablesOffset(offset);
1293
1294 offset = AssignFillArrayDataOffset(offset);
1295
1296 total_size_ = offset;
1297}
1298
1299/*
1300 * Go over each instruction in the list and calculate the offset from the top
1301 * before sending them off to the assembler. If out-of-range branch distance is
1302 * seen rearrange the instructions a bit to correct it.
1303 * TODO: consolidate w/ Arm assembly mechanism.
1304 */
1305void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001306 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001307 AssignOffsets();
1308 int assembler_retries = 0;
1309 /*
1310 * Assemble here. Note that we generate code with optimistic assumptions
1311 * and if found now to work, we'll have to redo the sequence and retry.
1312 */
1313
1314 while (true) {
1315 AssemblerStatus res = AssembleInstructions(0);
1316 if (res == kSuccess) {
1317 break;
1318 } else {
1319 assembler_retries++;
1320 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1321 CodegenDump();
1322 LOG(FATAL) << "Assembler error - too many retries";
1323 }
1324 // Redo offsets and try again
1325 AssignOffsets();
1326 code_buffer_.clear();
1327 }
1328 }
1329
1330 // Install literals
1331 InstallLiteralPools();
1332
1333 // Install switch tables
1334 InstallSwitchTables();
1335
1336 // Install fill array data
1337 InstallFillArrayData();
1338
1339 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001340 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001341 CreateMappingTables();
1342
buzbeea61f4952013-08-23 14:27:06 -07001343 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001344 CreateNativeGcMap();
1345}
1346
Brian Carlstrom7940e442013-07-12 13:46:57 -07001347} // namespace art