blob: 3058b0c88482fcabd952720a537999de374412c5 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
Mark Mendell4708dcd2014-01-22 09:05:18 -0800214 { kX86Shld32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32", "!0r,!1r,!2d" },
215 { kX86Shrd32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32", "!0r,!1r,!2d" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700216
217 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
218 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
219 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
220 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
221 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
222 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
223 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
224 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
225 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
226 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
227
228#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
229 reg, reg_kind, reg_flags, \
230 mem, mem_kind, mem_flags, \
231 arr, arr_kind, arr_flags, imm, \
232 b_flags, hw_flags, w_flags, \
233 b_format, hw_format, w_format) \
234{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
235{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
236{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
237{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
238{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
239{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
240{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
241{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
242{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
243
244 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
245 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
246
Mark Mendell2bf31e62014-01-23 12:13:40 -0800247 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
248 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
249 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
250 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700251#undef UNARY_ENCODING_MAP
252
Mark Mendell2bf31e62014-01-23 12:13:40 -0800253 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000254 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
255 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
256 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100257
Brian Carlstrom7940e442013-07-12 13:46:57 -0700258#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
259{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
260{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
261{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
262
263 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
264 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
265 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
266
267 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
268 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
269 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
270
271 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
279 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
280 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
281 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
291 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
292 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800293 EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700294
295 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
296 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800297 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000298 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700299
300 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
301 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
302 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
303 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
304
305 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
306 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
307 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
308
309 // TODO: load/store?
310 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
311 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
312
313 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
314 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
315
316 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
317 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
318 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700319 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
320 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000321 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
322 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700323
324 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
325 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
326 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
327 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
328#undef EXT_0F_ENCODING_MAP
329
330 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
331 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
332 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
333 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
334 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
335 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
336 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
337 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
338 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700339 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700340
341 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
342 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
343 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
344};
345
346static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
347 size_t size = 0;
348 if (entry->skeleton.prefix1 > 0) {
349 ++size;
350 if (entry->skeleton.prefix2 > 0) {
351 ++size;
352 }
353 }
354 ++size; // opcode
355 if (entry->skeleton.opcode == 0x0F) {
356 ++size;
357 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
358 ++size;
359 }
360 }
361 ++size; // modrm
362 if (has_sib || base == rX86_SP) {
363 // SP requires a SIB byte.
364 ++size;
365 }
366 if (displacement != 0 || base == rBP) {
367 // BP requires an explicit displacement, even when it's 0.
368 if (entry->opcode != kX86Lea32RA) {
369 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
370 }
371 size += IS_SIMM8(displacement) ? 1 : 4;
372 }
373 size += entry->skeleton.immediate_bytes;
374 return size;
375}
376
377int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700378 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700379 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
380 switch (entry->kind) {
381 case kData:
382 return 4; // 4 bytes of data
383 case kNop:
384 return lir->operands[0]; // length of nop is sole operand
385 case kNullary:
386 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100387 case kRegOpcode: // lir operands - 0: reg
388 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700389 case kReg: // lir operands - 0: reg
390 return ComputeSize(entry, 0, 0, false);
391 case kMem: // lir operands - 0: base, 1: disp
392 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
393 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
394 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
395 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
396 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
397 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
398 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
399 case kThreadReg: // lir operands - 0: disp, 1: reg
400 return ComputeSize(entry, 0, lir->operands[0], false);
401 case kRegReg:
402 return ComputeSize(entry, 0, 0, false);
403 case kRegRegStore:
404 return ComputeSize(entry, 0, 0, false);
405 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
406 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
407 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
408 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
409 case kRegThread: // lir operands - 0: reg, 1: disp
410 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
411 case kRegImm: { // lir operands - 0: reg, 1: immediate
412 size_t size = ComputeSize(entry, 0, 0, false);
413 if (entry->skeleton.ax_opcode == 0) {
414 return size;
415 } else {
416 // AX opcodes don't require the modrm byte.
417 int reg = lir->operands[0];
418 return size - (reg == rAX ? 1 : 0);
419 }
420 }
421 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
422 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
423 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
424 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
425 case kThreadImm: // lir operands - 0: disp, 1: imm
426 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
427 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
Mark Mendell4708dcd2014-01-22 09:05:18 -0800428 case kRegRegImmRev:
Brian Carlstrom7940e442013-07-12 13:46:57 -0700429 return ComputeSize(entry, 0, 0, false);
430 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
431 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
432 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
433 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
434 case kMovRegImm: // lir operands - 0: reg, 1: immediate
435 return 1 + entry->skeleton.immediate_bytes;
436 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
437 // Shift by immediate one has a shorter opcode.
438 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
439 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
440 // Shift by immediate one has a shorter opcode.
441 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
442 (lir->operands[2] == 1 ? 1 : 0);
443 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
444 // Shift by immediate one has a shorter opcode.
445 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
446 (lir->operands[4] == 1 ? 1 : 0);
447 case kShiftRegCl:
448 return ComputeSize(entry, 0, 0, false);
449 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
450 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
451 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
452 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
453 case kRegCond: // lir operands - 0: reg, 1: cond
454 return ComputeSize(entry, 0, 0, false);
455 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
456 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
457 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
458 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800459 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
460 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700461 case kJcc:
462 if (lir->opcode == kX86Jcc8) {
463 return 2; // opcode + rel8
464 } else {
465 DCHECK(lir->opcode == kX86Jcc32);
466 return 6; // 2 byte opcode + rel32
467 }
468 case kJmp:
469 if (lir->opcode == kX86Jmp8) {
470 return 2; // opcode + rel8
471 } else if (lir->opcode == kX86Jmp32) {
472 return 5; // opcode + rel32
473 } else {
474 DCHECK(lir->opcode == kX86JmpR);
475 return 2; // opcode + modrm
476 }
477 case kCall:
478 switch (lir->opcode) {
479 case kX86CallR: return 2; // opcode modrm
480 case kX86CallM: // lir operands - 0: base, 1: disp
481 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
482 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
483 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
484 case kX86CallT: // lir operands - 0: disp
485 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
486 default:
487 break;
488 }
489 break;
490 case kPcRel:
491 if (entry->opcode == kX86PcRelLoadRA) {
492 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
493 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
494 } else {
495 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700496 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700497 }
498 case kMacro:
499 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
500 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
501 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
502 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
503 default:
504 break;
505 }
506 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
507 return 0;
508}
509
Vladimir Marko057c74a2013-12-03 15:20:45 +0000510void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
511 if (entry->skeleton.prefix1 != 0) {
512 code_buffer_.push_back(entry->skeleton.prefix1);
513 if (entry->skeleton.prefix2 != 0) {
514 code_buffer_.push_back(entry->skeleton.prefix2);
515 }
516 } else {
517 DCHECK_EQ(0, entry->skeleton.prefix2);
518 }
519}
520
521void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
522 code_buffer_.push_back(entry->skeleton.opcode);
523 if (entry->skeleton.opcode == 0x0F) {
524 code_buffer_.push_back(entry->skeleton.extra_opcode1);
525 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
526 code_buffer_.push_back(entry->skeleton.extra_opcode2);
527 } else {
528 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
529 }
530 } else {
531 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
532 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
533 }
534}
535
536void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
537 EmitPrefix(entry);
538 EmitOpcode(entry);
539}
540
Brian Carlstrom7940e442013-07-12 13:46:57 -0700541static uint8_t ModrmForDisp(int base, int disp) {
542 // BP requires an explicit disp, so do not omit it in the 0 case
543 if (disp == 0 && base != rBP) {
544 return 0;
545 } else if (IS_SIMM8(disp)) {
546 return 1;
547 } else {
548 return 2;
549 }
550}
551
Vladimir Marko057c74a2013-12-03 15:20:45 +0000552void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700553 // BP requires an explicit disp, so do not omit it in the 0 case
554 if (disp == 0 && base != rBP) {
555 return;
556 } else if (IS_SIMM8(disp)) {
557 code_buffer_.push_back(disp & 0xFF);
558 } else {
559 code_buffer_.push_back(disp & 0xFF);
560 code_buffer_.push_back((disp >> 8) & 0xFF);
561 code_buffer_.push_back((disp >> 16) & 0xFF);
562 code_buffer_.push_back((disp >> 24) & 0xFF);
563 }
564}
565
Vladimir Marko057c74a2013-12-03 15:20:45 +0000566void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
567 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700568 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000569 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700570 code_buffer_.push_back(modrm);
571 if (base == rX86_SP) {
572 // Special SIB for SP base
573 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
574 }
575 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700576}
577
Vladimir Marko057c74a2013-12-03 15:20:45 +0000578void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
579 int scale, int disp) {
580 DCHECK_LT(reg_or_opcode, 8);
581 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700582 code_buffer_.push_back(modrm);
583 DCHECK_LT(scale, 4);
584 DCHECK_LT(index, 8);
585 DCHECK_LT(base, 8);
586 uint8_t sib = (scale << 6) | (index << 3) | base;
587 code_buffer_.push_back(sib);
588 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700589}
590
Vladimir Marko057c74a2013-12-03 15:20:45 +0000591void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700592 switch (entry->skeleton.immediate_bytes) {
593 case 1:
594 DCHECK(IS_SIMM8(imm));
595 code_buffer_.push_back(imm & 0xFF);
596 break;
597 case 2:
598 DCHECK(IS_SIMM16(imm));
599 code_buffer_.push_back(imm & 0xFF);
600 code_buffer_.push_back((imm >> 8) & 0xFF);
601 break;
602 case 4:
603 code_buffer_.push_back(imm & 0xFF);
604 code_buffer_.push_back((imm >> 8) & 0xFF);
605 code_buffer_.push_back((imm >> 16) & 0xFF);
606 code_buffer_.push_back((imm >> 24) & 0xFF);
607 break;
608 default:
609 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
610 << ") for instruction: " << entry->name;
611 break;
612 }
613}
614
Vladimir Marko057c74a2013-12-03 15:20:45 +0000615void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
616 EmitPrefixAndOpcode(entry);
617 // There's no 3-byte instruction with +rd
618 DCHECK(entry->skeleton.opcode != 0x0F ||
619 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
620 DCHECK(!X86_FPREG(reg));
621 DCHECK_LT(reg, 8);
622 code_buffer_.back() += reg;
623 DCHECK_EQ(0, entry->skeleton.ax_opcode);
624 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
625}
626
627void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
628 EmitPrefixAndOpcode(entry);
629 if (X86_FPREG(reg)) {
630 reg = reg & X86_FP_REG_MASK;
631 }
632 if (reg >= 4) {
633 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
634 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
635 }
636 DCHECK_LT(reg, 8);
637 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
638 code_buffer_.push_back(modrm);
639 DCHECK_EQ(0, entry->skeleton.ax_opcode);
640 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
641}
642
643void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
644 EmitPrefix(entry);
645 code_buffer_.push_back(entry->skeleton.opcode);
646 DCHECK_NE(0x0F, entry->skeleton.opcode);
647 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
648 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000649 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
650 DCHECK_EQ(0, entry->skeleton.ax_opcode);
651 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
652}
653
654void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
655 int scale, int disp) {
656 EmitPrefixAndOpcode(entry);
657 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
658 DCHECK_EQ(0, entry->skeleton.ax_opcode);
659 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
660}
661
662void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
663 uint8_t base, int disp, uint8_t reg) {
664 EmitPrefixAndOpcode(entry);
665 if (X86_FPREG(reg)) {
666 reg = reg & X86_FP_REG_MASK;
667 }
668 if (reg >= 4) {
669 DCHECK(strchr(entry->name, '8') == NULL ||
670 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
671 << entry->name << " " << static_cast<int>(reg)
672 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
673 }
674 EmitModrmDisp(reg, base, disp);
675 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
676 DCHECK_EQ(0, entry->skeleton.ax_opcode);
677 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
678}
679
680void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
681 uint8_t reg, uint8_t base, int disp) {
682 // Opcode will flip operands.
683 EmitMemReg(entry, base, disp, reg);
684}
685
686void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
687 int scale, int disp) {
688 EmitPrefixAndOpcode(entry);
689 if (X86_FPREG(reg)) {
690 reg = reg & X86_FP_REG_MASK;
691 }
692 EmitModrmSibDisp(reg, base, index, scale, disp);
693 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
694 DCHECK_EQ(0, entry->skeleton.ax_opcode);
695 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
696}
697
698void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
699 uint8_t reg) {
700 // Opcode will flip operands.
701 EmitRegArray(entry, reg, base, index, scale, disp);
702}
703
704void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
705 DCHECK_NE(entry->skeleton.prefix1, 0);
706 EmitPrefixAndOpcode(entry);
707 if (X86_FPREG(reg)) {
708 reg = reg & X86_FP_REG_MASK;
709 }
710 if (reg >= 4) {
711 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
712 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
713 }
714 DCHECK_LT(reg, 8);
715 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
716 code_buffer_.push_back(modrm);
717 code_buffer_.push_back(disp & 0xFF);
718 code_buffer_.push_back((disp >> 8) & 0xFF);
719 code_buffer_.push_back((disp >> 16) & 0xFF);
720 code_buffer_.push_back((disp >> 24) & 0xFF);
721 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
722 DCHECK_EQ(0, entry->skeleton.ax_opcode);
723 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
724}
725
726void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
727 EmitPrefixAndOpcode(entry);
728 if (X86_FPREG(reg1)) {
729 reg1 = reg1 & X86_FP_REG_MASK;
730 }
731 if (X86_FPREG(reg2)) {
732 reg2 = reg2 & X86_FP_REG_MASK;
733 }
734 DCHECK_LT(reg1, 8);
735 DCHECK_LT(reg2, 8);
736 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
737 code_buffer_.push_back(modrm);
738 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
739 DCHECK_EQ(0, entry->skeleton.ax_opcode);
740 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
741}
742
743void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
744 uint8_t reg1, uint8_t reg2, int32_t imm) {
745 EmitPrefixAndOpcode(entry);
746 if (X86_FPREG(reg1)) {
747 reg1 = reg1 & X86_FP_REG_MASK;
748 }
749 if (X86_FPREG(reg2)) {
750 reg2 = reg2 & X86_FP_REG_MASK;
751 }
752 DCHECK_LT(reg1, 8);
753 DCHECK_LT(reg2, 8);
754 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
755 code_buffer_.push_back(modrm);
756 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
757 DCHECK_EQ(0, entry->skeleton.ax_opcode);
758 EmitImm(entry, imm);
759}
760
Mark Mendell4708dcd2014-01-22 09:05:18 -0800761void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
762 uint8_t reg1, uint8_t reg2, int32_t imm) {
763 EmitRegRegImm(entry, reg2, reg1, imm);
764}
765
766void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
767 uint8_t reg, uint8_t base, int disp, int32_t imm) {
768 EmitPrefixAndOpcode(entry);
769 DCHECK(!X86_FPREG(reg));
770 DCHECK_LT(reg, 8);
771 EmitModrmDisp(reg, base, disp);
772 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
773 DCHECK_EQ(0, entry->skeleton.ax_opcode);
774 EmitImm(entry, imm);
775}
776
Brian Carlstrom7940e442013-07-12 13:46:57 -0700777void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
778 if (entry->skeleton.prefix1 != 0) {
779 code_buffer_.push_back(entry->skeleton.prefix1);
780 if (entry->skeleton.prefix2 != 0) {
781 code_buffer_.push_back(entry->skeleton.prefix2);
782 }
783 } else {
784 DCHECK_EQ(0, entry->skeleton.prefix2);
785 }
786 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
787 code_buffer_.push_back(entry->skeleton.ax_opcode);
788 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000789 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700790 if (X86_FPREG(reg)) {
791 reg = reg & X86_FP_REG_MASK;
792 }
793 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
794 code_buffer_.push_back(modrm);
795 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000796 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700797}
798
Mark Mendell343adb52013-12-18 06:02:17 -0800799void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
800 EmitPrefixAndOpcode(entry);
801 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
802 DCHECK_EQ(0, entry->skeleton.ax_opcode);
803 EmitImm(entry, imm);
804}
805
Brian Carlstrom7940e442013-07-12 13:46:57 -0700806void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000807 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700808 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
809 code_buffer_.push_back(modrm);
810 code_buffer_.push_back(disp & 0xFF);
811 code_buffer_.push_back((disp >> 8) & 0xFF);
812 code_buffer_.push_back((disp >> 16) & 0xFF);
813 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000814 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
816}
817
818void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
819 DCHECK_LT(reg, 8);
820 code_buffer_.push_back(0xB8 + reg);
821 code_buffer_.push_back(imm & 0xFF);
822 code_buffer_.push_back((imm >> 8) & 0xFF);
823 code_buffer_.push_back((imm >> 16) & 0xFF);
824 code_buffer_.push_back((imm >> 24) & 0xFF);
825}
826
827void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000828 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700829 if (imm != 1) {
830 code_buffer_.push_back(entry->skeleton.opcode);
831 } else {
832 // Shorter encoding for 1 bit shift
833 code_buffer_.push_back(entry->skeleton.ax_opcode);
834 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000835 DCHECK_NE(0x0F, entry->skeleton.opcode);
836 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
837 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700838 if (reg >= 4) {
839 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
840 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
841 }
842 DCHECK_LT(reg, 8);
843 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
844 code_buffer_.push_back(modrm);
845 if (imm != 1) {
846 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
847 DCHECK(IS_SIMM8(imm));
848 code_buffer_.push_back(imm & 0xFF);
849 }
850}
851
852void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
853 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000854 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700855 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000856 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700857 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
858 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
859 DCHECK_LT(reg, 8);
860 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
861 code_buffer_.push_back(modrm);
862 DCHECK_EQ(0, entry->skeleton.ax_opcode);
863 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
864}
865
Mark Mendellfeb2b4e2014-01-28 12:59:49 -0800866void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base,
867 int displacement, uint8_t cl) {
868 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
869 EmitPrefix(entry);
870 code_buffer_.push_back(entry->skeleton.opcode);
871 DCHECK_NE(0x0F, entry->skeleton.opcode);
872 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
873 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
874 DCHECK_LT(base, 8);
875 EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
876 DCHECK_EQ(0, entry->skeleton.ax_opcode);
877 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
878}
879
Brian Carlstrom7940e442013-07-12 13:46:57 -0700880void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
881 if (entry->skeleton.prefix1 != 0) {
882 code_buffer_.push_back(entry->skeleton.prefix1);
883 if (entry->skeleton.prefix2 != 0) {
884 code_buffer_.push_back(entry->skeleton.prefix2);
885 }
886 } else {
887 DCHECK_EQ(0, entry->skeleton.prefix2);
888 }
889 DCHECK_EQ(0, entry->skeleton.ax_opcode);
890 DCHECK_EQ(0x0F, entry->skeleton.opcode);
891 code_buffer_.push_back(0x0F);
892 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
893 code_buffer_.push_back(0x90 | condition);
894 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
895 DCHECK_LT(reg, 8);
896 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
897 code_buffer_.push_back(modrm);
898 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
899}
900
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800901void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
902 // Generate prefix and opcode without the condition
903 EmitPrefixAndOpcode(entry);
904
905 // Now add the condition. The last byte of opcode is the one that receives it.
906 DCHECK_LE(condition, 0xF);
907 code_buffer_.back() += condition;
908
909 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
910 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
911 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
912
913 // Check that registers requested for encoding are sane.
914 DCHECK_LT(reg1, 8);
915 DCHECK_LT(reg2, 8);
916
917 // For register to register encoding, the mod is 3.
918 const uint8_t mod = (3 << 6);
919
920 // Encode the ModR/M byte now.
921 const uint8_t modrm = mod | (reg1 << 3) | reg2;
922 code_buffer_.push_back(modrm);
923}
924
Brian Carlstrom7940e442013-07-12 13:46:57 -0700925void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
926 if (entry->opcode == kX86Jmp8) {
927 DCHECK(IS_SIMM8(rel));
928 code_buffer_.push_back(0xEB);
929 code_buffer_.push_back(rel & 0xFF);
930 } else if (entry->opcode == kX86Jmp32) {
931 code_buffer_.push_back(0xE9);
932 code_buffer_.push_back(rel & 0xFF);
933 code_buffer_.push_back((rel >> 8) & 0xFF);
934 code_buffer_.push_back((rel >> 16) & 0xFF);
935 code_buffer_.push_back((rel >> 24) & 0xFF);
936 } else {
937 DCHECK(entry->opcode == kX86JmpR);
938 code_buffer_.push_back(entry->skeleton.opcode);
939 uint8_t reg = static_cast<uint8_t>(rel);
940 DCHECK_LT(reg, 8);
941 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
942 code_buffer_.push_back(modrm);
943 }
944}
945
946void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
947 DCHECK_LT(cc, 16);
948 if (entry->opcode == kX86Jcc8) {
949 DCHECK(IS_SIMM8(rel));
950 code_buffer_.push_back(0x70 | cc);
951 code_buffer_.push_back(rel & 0xFF);
952 } else {
953 DCHECK(entry->opcode == kX86Jcc32);
954 code_buffer_.push_back(0x0F);
955 code_buffer_.push_back(0x80 | cc);
956 code_buffer_.push_back(rel & 0xFF);
957 code_buffer_.push_back((rel >> 8) & 0xFF);
958 code_buffer_.push_back((rel >> 16) & 0xFF);
959 code_buffer_.push_back((rel >> 24) & 0xFF);
960 }
961}
962
963void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000964 EmitPrefixAndOpcode(entry);
965 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700966 DCHECK_EQ(0, entry->skeleton.ax_opcode);
967 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
968}
969
970void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
971 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000972 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700973 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
974 code_buffer_.push_back(modrm);
975 code_buffer_.push_back(disp & 0xFF);
976 code_buffer_.push_back((disp >> 8) & 0xFF);
977 code_buffer_.push_back((disp >> 16) & 0xFF);
978 code_buffer_.push_back((disp >> 24) & 0xFF);
979 DCHECK_EQ(0, entry->skeleton.ax_opcode);
980 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
981}
982
983void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
984 int base_or_table, uint8_t index, int scale, int table_or_disp) {
985 int disp;
986 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700987 Mir2Lir::EmbeddedData *tab_rec =
988 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700989 disp = tab_rec->offset;
990 } else {
991 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700992 Mir2Lir::EmbeddedData *tab_rec =
993 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700994 disp = tab_rec->offset;
995 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000996 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700997 if (X86_FPREG(reg)) {
998 reg = reg & X86_FP_REG_MASK;
999 }
1000 DCHECK_LT(reg, 8);
1001 if (entry->opcode == kX86PcRelLoadRA) {
1002 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001003 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001004 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1005 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1006 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1007 code_buffer_.push_back(modrm);
1008 DCHECK_LT(scale, 4);
1009 DCHECK_LT(index, 8);
1010 DCHECK_LT(base_or_table, 8);
1011 uint8_t base = static_cast<uint8_t>(base_or_table);
1012 uint8_t sib = (scale << 6) | (index << 3) | base;
1013 code_buffer_.push_back(sib);
1014 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1015 } else {
1016 code_buffer_.push_back(entry->skeleton.opcode + reg);
1017 }
1018 code_buffer_.push_back(disp & 0xFF);
1019 code_buffer_.push_back((disp >> 8) & 0xFF);
1020 code_buffer_.push_back((disp >> 16) & 0xFF);
1021 code_buffer_.push_back((disp >> 24) & 0xFF);
1022 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1023 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1024}
1025
1026void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1027 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1028 code_buffer_.push_back(0xE8); // call +0
1029 code_buffer_.push_back(0);
1030 code_buffer_.push_back(0);
1031 code_buffer_.push_back(0);
1032 code_buffer_.push_back(0);
1033
1034 DCHECK_LT(reg, 8);
1035 code_buffer_.push_back(0x58 + reg); // pop reg
1036
1037 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1038}
1039
1040void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1041 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1042 << BuildInsnString(entry->fmt, lir, 0);
1043 for (int i = 0; i < GetInsnSize(lir); ++i) {
1044 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1045 }
1046}
1047
1048/*
1049 * Assemble the LIR into binary instruction format. Note that we may
1050 * discover that pc-relative displacements may not fit the selected
1051 * instruction. In those cases we will try to substitute a new code
1052 * sequence or request that the trace be shortened and retried.
1053 */
buzbee0d829482013-10-11 15:24:55 -07001054AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001055 LIR *lir;
1056 AssemblerStatus res = kSuccess; // Assume success
1057
1058 const bool kVerbosePcFixup = false;
1059 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001060 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001061 continue;
1062 }
1063
1064 if (lir->flags.is_nop) {
1065 continue;
1066 }
1067
buzbeeb48819d2013-09-14 16:15:25 -07001068 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001069 switch (lir->opcode) {
1070 case kX86Jcc8: {
1071 LIR *target_lir = lir->target;
1072 DCHECK(target_lir != NULL);
1073 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001074 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001075 if (IS_SIMM8(lir->operands[0])) {
1076 pc = lir->offset + 2 /* opcode + rel8 */;
1077 } else {
1078 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1079 }
buzbee0d829482013-10-11 15:24:55 -07001080 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001081 delta = target - pc;
1082 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1083 if (kVerbosePcFixup) {
1084 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1085 << " delta: " << delta << " old delta: " << lir->operands[0];
1086 }
1087 lir->opcode = kX86Jcc32;
1088 SetupResourceMasks(lir);
1089 res = kRetryAll;
1090 }
1091 if (kVerbosePcFixup) {
1092 LOG(INFO) << "Source:";
1093 DumpLIRInsn(lir, 0);
1094 LOG(INFO) << "Target:";
1095 DumpLIRInsn(target_lir, 0);
1096 LOG(INFO) << "Delta " << delta;
1097 }
1098 lir->operands[0] = delta;
1099 break;
1100 }
1101 case kX86Jcc32: {
1102 LIR *target_lir = lir->target;
1103 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001104 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1105 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001106 int delta = target - pc;
1107 if (kVerbosePcFixup) {
1108 LOG(INFO) << "Source:";
1109 DumpLIRInsn(lir, 0);
1110 LOG(INFO) << "Target:";
1111 DumpLIRInsn(target_lir, 0);
1112 LOG(INFO) << "Delta " << delta;
1113 }
1114 lir->operands[0] = delta;
1115 break;
1116 }
1117 case kX86Jmp8: {
1118 LIR *target_lir = lir->target;
1119 DCHECK(target_lir != NULL);
1120 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001121 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001122 if (IS_SIMM8(lir->operands[0])) {
1123 pc = lir->offset + 2 /* opcode + rel8 */;
1124 } else {
1125 pc = lir->offset + 5 /* opcode + rel32 */;
1126 }
buzbee0d829482013-10-11 15:24:55 -07001127 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001128 delta = target - pc;
1129 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1130 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001131 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001132 if (kVerbosePcFixup) {
1133 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1134 }
1135 res = kRetryAll;
1136 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1137 if (kVerbosePcFixup) {
1138 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1139 }
1140 lir->opcode = kX86Jmp32;
1141 SetupResourceMasks(lir);
1142 res = kRetryAll;
1143 }
1144 lir->operands[0] = delta;
1145 break;
1146 }
1147 case kX86Jmp32: {
1148 LIR *target_lir = lir->target;
1149 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001150 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1151 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001152 int delta = target - pc;
1153 lir->operands[0] = delta;
1154 break;
1155 }
1156 default:
Mark Mendell67c39c42014-01-31 17:28:00 -08001157 if (lir->flags.fixup == kFixupLoad) {
1158 LIR *target_lir = lir->target;
1159 DCHECK(target_lir != NULL);
1160 CodeOffset target = target_lir->offset;
1161 lir->operands[2] = target;
1162 int newSize = GetInsnSize(lir);
1163 if (newSize != lir->flags.size) {
1164 lir->flags.size = newSize;
1165 res = kRetryAll;
1166 }
1167 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001168 break;
1169 }
1170 }
1171
1172 /*
1173 * If one of the pc-relative instructions expanded we'll have
1174 * to make another pass. Don't bother to fully assemble the
1175 * instruction.
1176 */
1177 if (res != kSuccess) {
1178 continue;
1179 }
1180 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1181 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1182 size_t starting_cbuf_size = code_buffer_.size();
1183 switch (entry->kind) {
1184 case kData: // 4 bytes of data
1185 code_buffer_.push_back(lir->operands[0]);
1186 break;
1187 case kNullary: // 1 byte of opcode
1188 DCHECK_EQ(0, entry->skeleton.prefix1);
1189 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001190 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001191 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1192 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1193 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1194 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001195 case kRegOpcode: // lir operands - 0: reg
1196 EmitOpRegOpcode(entry, lir->operands[0]);
1197 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001198 case kReg: // lir operands - 0: reg
1199 EmitOpReg(entry, lir->operands[0]);
1200 break;
1201 case kMem: // lir operands - 0: base, 1: disp
1202 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1203 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001204 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1205 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1206 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001207 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1208 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1209 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001210 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1211 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1212 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001213 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1214 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1215 lir->operands[3], lir->operands[4]);
1216 break;
1217 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1218 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1219 break;
1220 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1221 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1222 lir->operands[3], lir->operands[4]);
1223 break;
1224 case kRegThread: // lir operands - 0: reg, 1: disp
1225 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1226 break;
1227 case kRegReg: // lir operands - 0: reg1, 1: reg2
1228 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1229 break;
1230 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1231 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1232 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001233 case kRegRegImmRev:
1234 EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1235 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001236 case kRegRegImm:
1237 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1238 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001239 case kRegMemImm:
1240 EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1241 lir->operands[3]);
1242 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001243 case kRegImm: // lir operands - 0: reg, 1: immediate
1244 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1245 break;
1246 case kThreadImm: // lir operands - 0: disp, 1: immediate
1247 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1248 break;
1249 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1250 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1251 break;
1252 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1253 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1254 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001255 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001256 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1257 break;
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001258 case kShiftMemCl: // lir operands - 0: base, 1:displacement, 2: cl
1259 EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1260 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001261 case kRegCond: // lir operands - 0: reg, 1: condition
1262 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1263 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001264 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1265 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1266 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001267 case kJmp: // lir operands - 0: rel
1268 EmitJmp(entry, lir->operands[0]);
1269 break;
1270 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1271 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1272 break;
1273 case kCall:
1274 switch (entry->opcode) {
1275 case kX86CallM: // lir operands - 0: base, 1: disp
1276 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1277 break;
1278 case kX86CallT: // lir operands - 0: disp
1279 EmitCallThread(entry, lir->operands[0]);
1280 break;
1281 default:
1282 EmitUnimplemented(entry, lir);
1283 break;
1284 }
1285 break;
1286 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1287 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1288 lir->operands[3], lir->operands[4]);
1289 break;
1290 case kMacro:
1291 EmitMacro(entry, lir->operands[0], lir->offset);
1292 break;
1293 default:
1294 EmitUnimplemented(entry, lir);
1295 break;
1296 }
1297 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1298 code_buffer_.size() - starting_cbuf_size)
1299 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1300 }
1301 return res;
1302}
1303
buzbeeb48819d2013-09-14 16:15:25 -07001304// LIR offset assignment.
1305// TODO: consolidate w/ Arm assembly mechanism.
1306int X86Mir2Lir::AssignInsnOffsets() {
1307 LIR* lir;
1308 int offset = 0;
1309
1310 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1311 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001312 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001313 if (!lir->flags.is_nop) {
1314 offset += lir->flags.size;
1315 }
1316 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1317 if (offset & 0x2) {
1318 offset += 2;
1319 lir->operands[0] = 1;
1320 } else {
1321 lir->operands[0] = 0;
1322 }
1323 }
1324 /* Pseudo opcodes don't consume space */
1325 }
1326 return offset;
1327}
1328
1329/*
1330 * Walk the compilation unit and assign offsets to instructions
1331 * and literals and compute the total size of the compiled unit.
1332 * TODO: consolidate w/ Arm assembly mechanism.
1333 */
1334void X86Mir2Lir::AssignOffsets() {
1335 int offset = AssignInsnOffsets();
1336
1337 /* Const values have to be word aligned */
1338 offset = (offset + 3) & ~3;
1339
1340 /* Set up offsets for literals */
1341 data_offset_ = offset;
1342
1343 offset = AssignLiteralOffset(offset);
1344
1345 offset = AssignSwitchTablesOffset(offset);
1346
1347 offset = AssignFillArrayDataOffset(offset);
1348
1349 total_size_ = offset;
1350}
1351
1352/*
1353 * Go over each instruction in the list and calculate the offset from the top
1354 * before sending them off to the assembler. If out-of-range branch distance is
1355 * seen rearrange the instructions a bit to correct it.
1356 * TODO: consolidate w/ Arm assembly mechanism.
1357 */
1358void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001359 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001360 AssignOffsets();
1361 int assembler_retries = 0;
1362 /*
1363 * Assemble here. Note that we generate code with optimistic assumptions
1364 * and if found now to work, we'll have to redo the sequence and retry.
1365 */
1366
1367 while (true) {
1368 AssemblerStatus res = AssembleInstructions(0);
1369 if (res == kSuccess) {
1370 break;
1371 } else {
1372 assembler_retries++;
1373 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1374 CodegenDump();
1375 LOG(FATAL) << "Assembler error - too many retries";
1376 }
1377 // Redo offsets and try again
1378 AssignOffsets();
1379 code_buffer_.clear();
1380 }
1381 }
1382
1383 // Install literals
1384 InstallLiteralPools();
1385
1386 // Install switch tables
1387 InstallSwitchTables();
1388
1389 // Install fill array data
1390 InstallFillArrayData();
1391
1392 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001393 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001394 CreateMappingTables();
1395
buzbeea61f4952013-08-23 14:27:06 -07001396 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001397 CreateNativeGcMap();
1398}
1399
Brian Carlstrom7940e442013-07-12 13:46:57 -07001400} // namespace art