blob: c92926566819aced49d98b5f985832bbb0aa3864 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
Vladimir Markoa1a70742014-03-03 10:28:05 +0000193 ConditionCode ccode = mir->meta.ccode;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800194
195 // The kMirOpSelect has two variants, one for constants and one for moves.
196 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
197
198 if (is_constant_case) {
199 int true_val = mir->dalvikInsn.vB;
200 int false_val = mir->dalvikInsn.vC;
201 rl_result = EvalLoc(rl_dest, kCoreReg, true);
202
203 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000204 * For ccode == kCondEq:
205 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800206 * 1) When the true case is zero and result_reg is not same as src_reg:
207 * xor result_reg, result_reg
208 * cmp $0, src_reg
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 * 2) When the false case is zero and result_reg is not same as src_reg:
212 * xor result_reg, result_reg
213 * cmp $0, src_reg
214 * mov t1, $true_case
215 * cmovz result_reg, t1
216 * 3) All other cases (we do compare first to set eflags):
217 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000218 * mov result_reg, $false_case
219 * mov t1, $true_case
220 * cmovz result_reg, t1
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800221 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000222 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800223 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
224 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
225 const bool catch_all_case = !(true_zero_case || false_zero_case);
226
227 if (true_zero_case || false_zero_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000228 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800229 }
230
231 if (true_zero_case || false_zero_case || catch_all_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000232 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800233 }
234
235 if (catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000236 OpRegImm(kOpMov, rl_result.reg.GetReg(), false_val);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800237 }
238
239 if (true_zero_case || false_zero_case || catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000240 ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
241 int immediateForTemp = true_zero_case ? false_val : true_val;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800242 int temp1_reg = AllocTemp();
243 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
244
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000245 OpCondRegReg(kOpCmov, cc, rl_result.reg.GetReg(), temp1_reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800246
247 FreeTemp(temp1_reg);
248 }
249 } else {
250 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
251 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
252 rl_true = LoadValue(rl_true, kCoreReg);
253 rl_false = LoadValue(rl_false, kCoreReg);
254 rl_result = EvalLoc(rl_dest, kCoreReg, true);
255
256 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000257 * For ccode == kCondEq:
258 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800259 * 1) When true case is already in place:
260 * cmp $0, src_reg
261 * cmovnz result_reg, false_reg
262 * 2) When false case is already in place:
263 * cmp $0, src_reg
264 * cmovz result_reg, true_reg
265 * 3) When neither cases are in place:
266 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000267 * mov result_reg, false_reg
268 * cmovz result_reg, true_reg
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800269 */
270
271 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000272 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800273
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000274 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000275 OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg.GetReg(), rl_false.reg.GetReg());
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000276 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000277 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800278 } else {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000279 OpRegCopy(rl_result.reg.GetReg(), rl_false.reg.GetReg());
280 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800281 }
282 }
283
284 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700285}
286
287void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700288 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700289 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
290 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000291 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800292
293 if (rl_src1.is_const) {
294 std::swap(rl_src1, rl_src2);
295 ccode = FlipComparisonOrder(ccode);
296 }
297 if (rl_src2.is_const) {
298 // Do special compare/branch against simple const operand
299 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
300 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
301 return;
302 }
303
Brian Carlstrom7940e442013-07-12 13:46:57 -0700304 FlushAllRegs();
305 LockCallTemps(); // Prepare for explicit register usage
306 LoadValueDirectWideFixed(rl_src1, r0, r1);
307 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700308 // Swap operands and condition code to prevent use of zero flag.
309 if (ccode == kCondLe || ccode == kCondGt) {
310 // Compute (r3:r2) = (r3:r2) - (r1:r0)
311 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
312 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
313 } else {
314 // Compute (r1:r0) = (r1:r0) - (r3:r2)
315 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
316 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
317 }
318 switch (ccode) {
319 case kCondEq:
320 case kCondNe:
321 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
322 break;
323 case kCondLe:
324 ccode = kCondGe;
325 break;
326 case kCondGt:
327 ccode = kCondLt;
328 break;
329 case kCondLt:
330 case kCondGe:
331 break;
332 default:
333 LOG(FATAL) << "Unexpected ccode: " << ccode;
334 }
335 OpCondBranch(ccode, taken);
336}
337
Mark Mendell412d4f82013-12-18 13:32:36 -0800338void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
339 int64_t val, ConditionCode ccode) {
340 int32_t val_lo = Low32Bits(val);
341 int32_t val_hi = High32Bits(val);
342 LIR* taken = &block_label_list_[bb->taken];
343 LIR* not_taken = &block_label_list_[bb->fall_through];
344 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000345 int32_t low_reg = rl_src1.reg.GetReg();
346 int32_t high_reg = rl_src1.reg.GetHighReg();
Mark Mendell412d4f82013-12-18 13:32:36 -0800347
348 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
349 int t_reg = AllocTemp();
350 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
351 FreeTemp(t_reg);
352 OpCondBranch(ccode, taken);
353 return;
354 }
355
356 OpRegImm(kOpCmp, high_reg, val_hi);
357 switch (ccode) {
358 case kCondEq:
359 case kCondNe:
360 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
361 break;
362 case kCondLt:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondUlt;
366 break;
367 case kCondLe:
368 OpCondBranch(kCondLt, taken);
369 OpCondBranch(kCondGt, not_taken);
370 ccode = kCondLs;
371 break;
372 case kCondGt:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondHi;
376 break;
377 case kCondGe:
378 OpCondBranch(kCondGt, taken);
379 OpCondBranch(kCondLt, not_taken);
380 ccode = kCondUge;
381 break;
382 default:
383 LOG(FATAL) << "Unexpected ccode: " << ccode;
384 }
385 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
386}
387
Mark Mendell2bf31e62014-01-23 12:13:40 -0800388void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
389 // It does not make sense to calculate magic and shift for zero divisor.
390 DCHECK_NE(divisor, 0);
391
392 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
393 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
394 * The magic number M and shift S can be calculated in the following way:
395 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
396 * where divisor(d) >=2.
397 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
398 * where divisor(d) <= -2.
399 * Thus nc can be calculated like:
400 * nc = 2^31 + 2^31 % d - 1, where d >= 2
401 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
402 *
403 * So the shift p is the smallest p satisfying
404 * 2^p > nc * (d - 2^p % d), where d >= 2
405 * 2^p > nc * (d + 2^p % d), where d <= -2.
406 *
407 * the magic number M is calcuated by
408 * M = (2^p + d - 2^p % d) / d, where d >= 2
409 * M = (2^p - d - 2^p % d) / d, where d <= -2.
410 *
411 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
412 * the shift number S.
413 */
414
415 int32_t p = 31;
416 const uint32_t two31 = 0x80000000U;
417
418 // Initialize the computations.
419 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
420 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
421 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
422 uint32_t quotient1 = two31 / abs_nc;
423 uint32_t remainder1 = two31 % abs_nc;
424 uint32_t quotient2 = two31 / abs_d;
425 uint32_t remainder2 = two31 % abs_d;
426
427 /*
428 * To avoid handling both positive and negative divisor, Hacker's Delight
429 * introduces a method to handle these 2 cases together to avoid duplication.
430 */
431 uint32_t delta;
432 do {
433 p++;
434 quotient1 = 2 * quotient1;
435 remainder1 = 2 * remainder1;
436 if (remainder1 >= abs_nc) {
437 quotient1++;
438 remainder1 = remainder1 - abs_nc;
439 }
440 quotient2 = 2 * quotient2;
441 remainder2 = 2 * remainder2;
442 if (remainder2 >= abs_d) {
443 quotient2++;
444 remainder2 = remainder2 - abs_d;
445 }
446 delta = abs_d - remainder2;
447 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
448
449 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
450 shift = p - 32;
451}
452
Brian Carlstrom7940e442013-07-12 13:46:57 -0700453RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700454 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700455 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
456 return rl_dest;
457}
458
Mark Mendell2bf31e62014-01-23 12:13:40 -0800459RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
460 int imm, bool is_div) {
461 // Use a multiply (and fixup) to perform an int div/rem by a constant.
462
463 // We have to use fixed registers, so flush all the temps.
464 FlushAllRegs();
465 LockCallTemps(); // Prepare for explicit register usage.
466
467 // Assume that the result will be in EDX.
468 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000469 RegStorage(RegStorage::k32BitSolo, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800470
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700471 // handle div/rem by 1 special case.
472 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800473 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700474 // x / 1 == x.
475 StoreValue(rl_result, rl_src);
476 } else {
477 // x % 1 == 0.
478 LoadConstantNoClobber(r0, 0);
479 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000480 rl_result.reg.SetReg(r0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700481 }
482 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
483 if (is_div) {
484 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800485 LoadValueDirectFixed(rl_src, r0);
486 OpRegImm(kOpCmp, r0, 0x80000000);
487 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
488
489 // for x != MIN_INT, x / -1 == -x.
490 NewLIR1(kX86Neg32R, r0);
491
492 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
493 // The target for cmp/jmp above.
494 minint_branch->target = NewLIR0(kPseudoTargetLabel);
495 // EAX already contains the right value (0x80000000),
496 branch_around->target = NewLIR0(kPseudoTargetLabel);
497 } else {
498 // x % -1 == 0.
499 LoadConstantNoClobber(r0, 0);
500 }
501 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000502 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800503 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700504 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800505 // Use H.S.Warren's Hacker's Delight Chapter 10 and
506 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
507 int magic, shift;
508 CalculateMagicAndShift(imm, magic, shift);
509
510 /*
511 * For imm >= 2,
512 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
513 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
514 * For imm <= -2,
515 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
516 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
517 * We implement this algorithm in the following way:
518 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
519 * 2. if imm > 0 and magic < 0, add numerator to EDX
520 * if imm < 0 and magic > 0, sub numerator from EDX
521 * 3. if S !=0, SAR S bits for EDX
522 * 4. add 1 to EDX if EDX < 0
523 * 5. Thus, EDX is the quotient
524 */
525
526 // Numerator into EAX.
527 int numerator_reg = -1;
528 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
529 // We will need the value later.
530 if (rl_src.location == kLocPhysReg) {
531 // We can use it directly.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000532 DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
533 numerator_reg = rl_src.reg.GetReg();
Mark Mendell2bf31e62014-01-23 12:13:40 -0800534 } else {
535 LoadValueDirectFixed(rl_src, r1);
536 numerator_reg = r1;
537 }
538 OpRegCopy(r0, numerator_reg);
539 } else {
540 // Only need this once. Just put it into EAX.
541 LoadValueDirectFixed(rl_src, r0);
542 }
543
544 // EDX = magic.
545 LoadConstantNoClobber(r2, magic);
546
547 // EDX:EAX = magic & dividend.
548 NewLIR1(kX86Imul32DaR, r2);
549
550 if (imm > 0 && magic < 0) {
551 // Add numerator to EDX.
552 DCHECK_NE(numerator_reg, -1);
553 NewLIR2(kX86Add32RR, r2, numerator_reg);
554 } else if (imm < 0 && magic > 0) {
555 DCHECK_NE(numerator_reg, -1);
556 NewLIR2(kX86Sub32RR, r2, numerator_reg);
557 }
558
559 // Do we need the shift?
560 if (shift != 0) {
561 // Shift EDX by 'shift' bits.
562 NewLIR2(kX86Sar32RI, r2, shift);
563 }
564
565 // Add 1 to EDX if EDX < 0.
566
567 // Move EDX to EAX.
568 OpRegCopy(r0, r2);
569
570 // Move sign bit to bit 0, zeroing the rest.
571 NewLIR2(kX86Shr32RI, r2, 31);
572
573 // EDX = EDX + EAX.
574 NewLIR2(kX86Add32RR, r2, r0);
575
576 // Quotient is in EDX.
577 if (!is_div) {
578 // We need to compute the remainder.
579 // Remainder is divisor - (quotient * imm).
580 DCHECK_NE(numerator_reg, -1);
581 OpRegCopy(r0, numerator_reg);
582
583 // EAX = numerator * imm.
584 OpRegRegImm(kOpMul, r2, r2, imm);
585
586 // EDX -= EAX.
587 NewLIR2(kX86Sub32RR, r0, r2);
588
589 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000590 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800591 }
592 }
593
594 return rl_result;
595}
596
Brian Carlstrom7940e442013-07-12 13:46:57 -0700597RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700598 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700599 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
600 return rl_dest;
601}
602
Mark Mendell2bf31e62014-01-23 12:13:40 -0800603RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
604 RegLocation rl_src2, bool is_div, bool check_zero) {
605 // We have to use fixed registers, so flush all the temps.
606 FlushAllRegs();
607 LockCallTemps(); // Prepare for explicit register usage.
608
609 // Load LHS into EAX.
610 LoadValueDirectFixed(rl_src1, r0);
611
612 // Load RHS into EBX.
613 LoadValueDirectFixed(rl_src2, r1);
614
615 // Copy LHS sign bit into EDX.
616 NewLIR0(kx86Cdq32Da);
617
618 if (check_zero) {
619 // Handle division by zero case.
620 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
621 }
622
623 // Have to catch 0x80000000/-1 case, or we will get an exception!
624 OpRegImm(kOpCmp, r1, -1);
625 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
626
627 // RHS is -1.
628 OpRegImm(kOpCmp, r0, 0x80000000);
629 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
630
631 // In 0x80000000/-1 case.
632 if (!is_div) {
633 // For DIV, EAX is already right. For REM, we need EDX 0.
634 LoadConstantNoClobber(r2, 0);
635 }
636 LIR* done = NewLIR1(kX86Jmp8, 0);
637
638 // Expected case.
639 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
640 minint_branch->target = minus_one_branch->target;
641 NewLIR1(kX86Idivmod32DaR, r1);
642 done->target = NewLIR0(kPseudoTargetLabel);
643
644 // Result is in EAX for div and EDX for rem.
645 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000646 RegStorage(RegStorage::k32BitSolo, r0), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800647 if (!is_div) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000648 rl_result.reg.SetReg(r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800649 }
650 return rl_result;
651}
652
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700653bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700654 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800655
656 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700657 RegLocation rl_src1 = info->args[0];
658 RegLocation rl_src2 = info->args[1];
659 rl_src1 = LoadValue(rl_src1, kCoreReg);
660 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800661
Brian Carlstrom7940e442013-07-12 13:46:57 -0700662 RegLocation rl_dest = InlineTarget(info);
663 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800664
665 /*
666 * If the result register is the same as the second element, then we need to be careful.
667 * The reason is that the first copy will inadvertently clobber the second element with
668 * the first one thus yielding the wrong result. Thus we do a swap in that case.
669 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000670 if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800671 std::swap(rl_src1, rl_src2);
672 }
673
674 // Pick the first integer as min/max.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000675 OpRegCopy(rl_result.reg.GetReg(), rl_src1.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800676
677 // If the integers are both in the same register, then there is nothing else to do
678 // because they are equal and we have already moved one into the result.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000679 if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800680 // It is possible we didn't pick correctly so do the actual comparison now.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000681 OpRegReg(kOpCmp, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800682
683 // Conditionally move the other integer into the destination register.
684 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000685 OpCondRegReg(kOpCmov, condition_code, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800686 }
687
Brian Carlstrom7940e442013-07-12 13:46:57 -0700688 StoreValue(rl_dest, rl_result);
689 return true;
690}
691
Vladimir Markoe508a202013-11-04 15:24:22 +0000692bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
693 RegLocation rl_src_address = info->args[0]; // long address
694 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800695 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000696 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
697 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
698 if (size == kLong) {
699 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000700 LoadBaseDispWide(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000701 StoreValueWide(rl_dest, rl_result);
702 } else {
703 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
704 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000705 LoadBaseDisp(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), size, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000706 StoreValue(rl_dest, rl_result);
707 }
708 return true;
709}
710
711bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
712 RegLocation rl_src_address = info->args[0]; // long address
713 rl_src_address.wide = 0; // ignore high half in info->args[1]
714 RegLocation rl_src_value = info->args[2]; // [size] value
715 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
716 if (size == kLong) {
717 // Unaligned access is allowed on x86.
718 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000719 StoreBaseDispWide(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
Vladimir Markoe508a202013-11-04 15:24:22 +0000720 } else {
721 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
722 // Unaligned access is allowed on x86.
723 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000724 StoreBaseDisp(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), size);
Vladimir Markoe508a202013-11-04 15:24:22 +0000725 }
726 return true;
727}
728
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700729void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700730 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
731}
732
Ian Rogers468532e2013-08-05 10:56:33 -0700733void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
734 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700735}
736
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700737static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, int reg) {
738 return !rl.reg.IsInvalid() && rl.reg.GetReg() == reg && (pMir2Lir->IsLive(reg) || rl.home);
739}
740
Vladimir Marko1c282e22013-11-21 14:49:47 +0000741bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000742 DCHECK_EQ(cu_->instruction_set, kX86);
743 // Unused - RegLocation rl_src_unsafe = info->args[0];
744 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
745 RegLocation rl_src_offset = info->args[2]; // long low
746 rl_src_offset.wide = 0; // ignore high half in info->args[3]
747 RegLocation rl_src_expected = info->args[4]; // int, long or Object
748 // If is_long, high half is in info->args[5]
749 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
750 // If is_long, high half is in info->args[7]
751
752 if (is_long) {
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700753 // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
754 // TODO: CFI support.
Vladimir Marko70b797d2013-12-03 15:25:24 +0000755 FlushAllRegs();
756 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000757 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
758 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000759 NewLIR1(kX86Push32R, rDI);
760 MarkTemp(rDI);
761 LockTemp(rDI);
762 NewLIR1(kX86Push32R, rSI);
763 MarkTemp(rSI);
764 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000765 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700766 int srcObjSp = IsInReg(this, rl_src_obj, rSI) ? 0
767 : (IsInReg(this, rl_src_obj, rDI) ? 4
768 : (SRegOffset(rl_src_obj.s_reg_low) + push_offset));
769 LoadWordDisp(TargetReg(kSp), srcObjSp, rDI);
770 int srcOffsetSp = IsInReg(this, rl_src_offset, rSI) ? 0
771 : (IsInReg(this, rl_src_offset, rDI) ? 4
772 : (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
773 LoadWordDisp(TargetReg(kSp), srcOffsetSp, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000774 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
775 FreeTemp(rSI);
776 UnmarkTemp(rSI);
777 NewLIR1(kX86Pop32R, rSI);
778 FreeTemp(rDI);
779 UnmarkTemp(rDI);
780 NewLIR1(kX86Pop32R, rDI);
781 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000782 } else {
783 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
784 FlushReg(r0);
785 LockTemp(r0);
786
787 // Release store semantics, get the barrier out of the way. TODO: revisit
788 GenMemBarrier(kStoreLoad);
789
790 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
791 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
792
793 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
794 // Mark card for object assuming new value is stored.
795 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000796 MarkGCCard(rl_new_value.reg.GetReg(), rl_object.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000797 LockTemp(r0);
798 }
799
800 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
801 LoadValueDirect(rl_src_expected, r0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000802 NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000803
804 FreeTemp(r0);
805 }
806
807 // Convert ZF to boolean
808 RegLocation rl_dest = InlineTarget(info); // boolean place for result
809 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000810 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
811 NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000812 StoreValue(rl_dest, rl_result);
813 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700814}
815
816LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800817 CHECK(base_of_code_ != nullptr);
818
819 // Address the start of the method
820 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
821 LoadValueDirectFixed(rl_method, reg);
822 store_method_addr_used_ = true;
823
824 // Load the proper value from the literal area.
825 // We don't know the proper offset for the value, so pick one that will force
826 // 4 byte offset. We will fix this up in the assembler later to have the right
827 // value.
828 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
829 res->target = target;
830 res->flags.fixup = kFixupLoad;
831 SetMemRefType(res, true, kLiteral);
832 store_method_addr_used_ = true;
833 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700834}
835
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700836LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 LOG(FATAL) << "Unexpected use of OpVldm for x86";
838 return NULL;
839}
840
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700841LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700842 LOG(FATAL) << "Unexpected use of OpVstm for x86";
843 return NULL;
844}
845
846void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
847 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700848 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700849 int t_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000850 OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), second_bit - first_bit);
851 OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), t_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700852 FreeTemp(t_reg);
853 if (first_bit != 0) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000854 OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_result.reg.GetReg(), first_bit);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700855 }
856}
857
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700858void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800859 // We are not supposed to clobber either of the provided registers, so allocate
860 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700861 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800862
863 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700864 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800865
866 // In case of zero, throw ArithmeticException.
867 GenCheck(kCondEq, kThrowDivZero);
868
869 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700870 FreeTemp(t_reg);
871}
872
873// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700874LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700875 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700876 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
877}
878
879// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700880LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700881 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800882 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700883}
884
buzbee11b63d12013-08-27 07:34:17 -0700885bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700886 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700887 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
888 return false;
889}
890
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700891LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700892 LOG(FATAL) << "Unexpected use of OpIT in x86";
893 return NULL;
894}
895
Mark Mendell4708dcd2014-01-22 09:05:18 -0800896void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
897 switch (val) {
898 case 0:
899 NewLIR2(kX86Xor32RR, dest, dest);
900 break;
901 case 1:
902 OpRegCopy(dest, src);
903 break;
904 default:
905 OpRegRegImm(kOpMul, dest, src, val);
906 break;
907 }
908}
909
910void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
911 LIR *m;
912 switch (val) {
913 case 0:
914 NewLIR2(kX86Xor32RR, dest, dest);
915 break;
916 case 1:
917 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
918 break;
919 default:
920 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
921 displacement, val);
922 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
923 break;
924 }
925}
926
Mark Mendelle02d48f2014-01-15 11:19:23 -0800927void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700928 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800929 if (rl_src1.is_const) {
930 std::swap(rl_src1, rl_src2);
931 }
932 // Are we multiplying by a constant?
933 if (rl_src2.is_const) {
934 // Do special compare/branch against simple const operand
935 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
936 if (val == 0) {
937 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000938 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
939 OpRegReg(kOpXor, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800940 StoreValueWide(rl_dest, rl_result);
941 return;
942 } else if (val == 1) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800943 StoreValueWide(rl_dest, rl_src1);
944 return;
945 } else if (val == 2) {
946 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
947 return;
948 } else if (IsPowerOfTwo(val)) {
949 int shift_amount = LowestSetBit(val);
950 if (!BadOverlap(rl_src1, rl_dest)) {
951 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
952 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
953 rl_src1, shift_amount);
954 StoreValueWide(rl_dest, rl_result);
955 return;
956 }
957 }
958
959 // Okay, just bite the bullet and do it.
960 int32_t val_lo = Low32Bits(val);
961 int32_t val_hi = High32Bits(val);
962 FlushAllRegs();
963 LockCallTemps(); // Prepare for explicit register usage.
964 rl_src1 = UpdateLocWide(rl_src1);
965 bool src1_in_reg = rl_src1.location == kLocPhysReg;
966 int displacement = SRegOffset(rl_src1.s_reg_low);
967
968 // ECX <- 1H * 2L
969 // EAX <- 1L * 2H
970 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000971 GenImulRegImm(r1, rl_src1.reg.GetHighReg(), val_lo);
972 GenImulRegImm(r0, rl_src1.reg.GetReg(), val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800973 } else {
974 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
975 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
976 }
977
978 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
979 NewLIR2(kX86Add32RR, r1, r0);
980
981 // EAX <- 2L
982 LoadConstantNoClobber(r0, val_lo);
983
984 // EDX:EAX <- 2L * 1L (double precision)
985 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000986 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800987 } else {
988 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
989 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
990 true /* is_load */, true /* is_64bit */);
991 }
992
993 // EDX <- EDX + ECX (add high words)
994 NewLIR2(kX86Add32RR, r2, r1);
995
996 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000997 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
998 RegStorage(RegStorage::k64BitPair, r0, r2),
Mark Mendell4708dcd2014-01-22 09:05:18 -0800999 INVALID_SREG, INVALID_SREG};
1000 StoreValueWide(rl_dest, rl_result);
1001 return;
1002 }
1003
1004 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -08001005 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1006 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1007 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1008
Mark Mendell4708dcd2014-01-22 09:05:18 -08001009 FlushAllRegs();
1010 LockCallTemps(); // Prepare for explicit register usage.
1011 rl_src1 = UpdateLocWide(rl_src1);
1012 rl_src2 = UpdateLocWide(rl_src2);
1013
1014 // At this point, the VRs are in their home locations.
1015 bool src1_in_reg = rl_src1.location == kLocPhysReg;
1016 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1017
1018 // ECX <- 1H
1019 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001020 NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001021 } else {
1022 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1023 kWord, GetSRegHi(rl_src1.s_reg_low));
1024 }
1025
Mark Mendellde99bba2014-02-14 12:15:02 -08001026 if (is_square) {
1027 // Take advantage of the fact that the values are the same.
1028 // ECX <- ECX * 2L (1H * 2L)
1029 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001030 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001031 } else {
1032 int displacement = SRegOffset(rl_src2.s_reg_low);
1033 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1034 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1035 true /* is_load */, true /* is_64bit */);
1036 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001037
Mark Mendellde99bba2014-02-14 12:15:02 -08001038 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1039 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001040 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001041 // EAX <- 2H
1042 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001043 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001044 } else {
1045 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1046 kWord, GetSRegHi(rl_src2.s_reg_low));
1047 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001048
Mark Mendellde99bba2014-02-14 12:15:02 -08001049 // EAX <- EAX * 1L (2H * 1L)
1050 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001051 NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001052 } else {
1053 int displacement = SRegOffset(rl_src1.s_reg_low);
1054 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1055 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1056 true /* is_load */, true /* is_64bit */);
1057 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001058
Mark Mendellde99bba2014-02-14 12:15:02 -08001059 // ECX <- ECX * 2L (1H * 2L)
1060 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001061 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001062 } else {
1063 int displacement = SRegOffset(rl_src2.s_reg_low);
1064 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1065 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1066 true /* is_load */, true /* is_64bit */);
1067 }
1068
1069 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1070 NewLIR2(kX86Add32RR, r1, r0);
1071 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001072
1073 // EAX <- 2L
1074 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001075 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001076 } else {
1077 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1078 kWord, rl_src2.s_reg_low);
1079 }
1080
1081 // EDX:EAX <- 2L * 1L (double precision)
1082 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001083 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001084 } else {
1085 int displacement = SRegOffset(rl_src1.s_reg_low);
1086 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1087 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1088 true /* is_load */, true /* is_64bit */);
1089 }
1090
1091 // EDX <- EDX + ECX (add high words)
1092 NewLIR2(kX86Add32RR, r2, r1);
1093
1094 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001095 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1096 RegStorage(RegStorage::k64BitPair, r0, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell4708dcd2014-01-22 09:05:18 -08001097 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001098}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001099
1100void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1101 Instruction::Code op) {
1102 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1103 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1104 if (rl_src.location == kLocPhysReg) {
1105 // Both operands are in registers.
Serguei Katkovab5545f2014-03-25 10:51:15 +07001106 // But we must ensure that rl_src is in pair
1107 rl_src = EvalLocWide(rl_src, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001108 if (rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001109 // The registers are the same, so we would clobber it before the use.
1110 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001111 OpRegCopy(temp_reg, rl_dest.reg.GetReg());
1112 rl_src.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001113 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001114 NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001115
1116 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001117 NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1118 FreeTemp(rl_src.reg.GetReg());
1119 FreeTemp(rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001120 return;
1121 }
1122
1123 // RHS is in memory.
1124 DCHECK((rl_src.location == kLocDalvikFrame) ||
1125 (rl_src.location == kLocCompilerTemp));
1126 int rBase = TargetReg(kSp);
1127 int displacement = SRegOffset(rl_src.s_reg_low);
1128
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001129 LIR *lir = NewLIR3(x86op, rl_dest.reg.GetReg(), rBase, displacement + LOWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001130 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1131 true /* is_load */, true /* is64bit */);
1132 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001133 lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), rBase, displacement + HIWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001134 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1135 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001136}
1137
Mark Mendelle02d48f2014-01-15 11:19:23 -08001138void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1139 rl_dest = UpdateLocWide(rl_dest);
1140 if (rl_dest.location == kLocPhysReg) {
1141 // Ensure we are in a register pair
1142 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1143
1144 rl_src = UpdateLocWide(rl_src);
1145 GenLongRegOrMemOp(rl_result, rl_src, op);
1146 StoreFinalValueWide(rl_dest, rl_result);
1147 return;
1148 }
1149
1150 // It wasn't in registers, so it better be in memory.
1151 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1152 (rl_dest.location == kLocCompilerTemp));
1153 rl_src = LoadValueWide(rl_src, kCoreReg);
1154
1155 // Operate directly into memory.
1156 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1157 int rBase = TargetReg(kSp);
1158 int displacement = SRegOffset(rl_dest.s_reg_low);
1159
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001160 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001161 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1162 false /* is_load */, true /* is64bit */);
1163 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001164 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001165 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1166 false /* is_load */, true /* is64bit */);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001167 FreeTemp(rl_src.reg.GetReg());
1168 FreeTemp(rl_src.reg.GetHighReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001169}
1170
Mark Mendelle02d48f2014-01-15 11:19:23 -08001171void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1172 RegLocation rl_src2, Instruction::Code op,
1173 bool is_commutative) {
1174 // Is this really a 2 operand operation?
1175 switch (op) {
1176 case Instruction::ADD_LONG_2ADDR:
1177 case Instruction::SUB_LONG_2ADDR:
1178 case Instruction::AND_LONG_2ADDR:
1179 case Instruction::OR_LONG_2ADDR:
1180 case Instruction::XOR_LONG_2ADDR:
1181 GenLongArith(rl_dest, rl_src2, op);
1182 return;
1183 default:
1184 break;
1185 }
1186
1187 if (rl_dest.location == kLocPhysReg) {
1188 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1189
1190 // We are about to clobber the LHS, so it needs to be a temp.
1191 rl_result = ForceTempWide(rl_result);
1192
1193 // Perform the operation using the RHS.
1194 rl_src2 = UpdateLocWide(rl_src2);
1195 GenLongRegOrMemOp(rl_result, rl_src2, op);
1196
1197 // And now record that the result is in the temp.
1198 StoreFinalValueWide(rl_dest, rl_result);
1199 return;
1200 }
1201
1202 // It wasn't in registers, so it better be in memory.
1203 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1204 (rl_dest.location == kLocCompilerTemp));
1205 rl_src1 = UpdateLocWide(rl_src1);
1206 rl_src2 = UpdateLocWide(rl_src2);
1207
1208 // Get one of the source operands into temporary register.
1209 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001210 if (IsTemp(rl_src1.reg.GetReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001211 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1212 } else if (is_commutative) {
1213 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1214 // We need at least one of them to be a temporary.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001215 if (!(IsTemp(rl_src2.reg.GetReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001216 rl_src1 = ForceTempWide(rl_src1);
Yevgeny Rouban91b6ffa2014-03-07 14:35:44 +07001217 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1218 } else {
1219 GenLongRegOrMemOp(rl_src2, rl_src1, op);
1220 StoreFinalValueWide(rl_dest, rl_src2);
1221 return;
Mark Mendelle02d48f2014-01-15 11:19:23 -08001222 }
Mark Mendelle02d48f2014-01-15 11:19:23 -08001223 } else {
1224 // Need LHS to be the temp.
1225 rl_src1 = ForceTempWide(rl_src1);
1226 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1227 }
1228
1229 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001230}
1231
Mark Mendelle02d48f2014-01-15 11:19:23 -08001232void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001233 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001234 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1235}
1236
1237void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1238 RegLocation rl_src1, RegLocation rl_src2) {
1239 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1240}
1241
1242void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1243 RegLocation rl_src1, RegLocation rl_src2) {
1244 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1245}
1246
1247void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1248 RegLocation rl_src1, RegLocation rl_src2) {
1249 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1250}
1251
1252void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1253 RegLocation rl_src1, RegLocation rl_src2) {
1254 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001255}
1256
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001257void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001258 rl_src = LoadValueWide(rl_src, kCoreReg);
1259 RegLocation rl_result = ForceTempWide(rl_src);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001260 if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1261 ((rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001262 // The registers are the same, so we would clobber it before the use.
1263 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001264 OpRegCopy(temp_reg, rl_result.reg.GetReg());
1265 rl_result.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001266 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001267 OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_result.reg.GetReg()); // rLow = -rLow
1268 OpRegImm(kOpAdc, rl_result.reg.GetHighReg(), 0); // rHigh = rHigh + CF
1269 OpRegReg(kOpNeg, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg()); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001270 StoreValueWide(rl_dest, rl_result);
1271}
1272
Ian Rogers468532e2013-08-05 10:56:33 -07001273void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001274 X86OpCode opcode = kX86Bkpt;
1275 switch (op) {
1276 case kOpCmp: opcode = kX86Cmp32RT; break;
1277 case kOpMov: opcode = kX86Mov32RT; break;
1278 default:
1279 LOG(FATAL) << "Bad opcode: " << op;
1280 break;
1281 }
Ian Rogers468532e2013-08-05 10:56:33 -07001282 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001283}
1284
1285/*
1286 * Generate array load
1287 */
1288void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001289 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001290 RegisterClass reg_class = oat_reg_class_by_size(size);
1291 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001292 RegLocation rl_result;
1293 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001294
Mark Mendell343adb52013-12-18 06:02:17 -08001295 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001296 if (size == kLong || size == kDouble) {
1297 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1298 } else {
1299 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1300 }
1301
Mark Mendell343adb52013-12-18 06:02:17 -08001302 bool constant_index = rl_index.is_const;
1303 int32_t constant_index_value = 0;
1304 if (!constant_index) {
1305 rl_index = LoadValue(rl_index, kCoreReg);
1306 } else {
1307 constant_index_value = mir_graph_->ConstantValue(rl_index);
1308 // If index is constant, just fold it into the data offset
1309 data_offset += constant_index_value << scale;
1310 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001311 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001312 }
1313
Brian Carlstrom7940e442013-07-12 13:46:57 -07001314 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001315 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001316
1317 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001318 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001319 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001320 constant_index_value, kThrowConstantArrayBounds);
1321 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001322 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001323 len_offset, kThrowArrayBounds);
1324 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001325 }
Mark Mendell343adb52013-12-18 06:02:17 -08001326 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001327 if ((size == kLong) || (size == kDouble)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001328 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_result.reg.GetReg(),
1329 rl_result.reg.GetHighReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001330 StoreValueWide(rl_dest, rl_result);
1331 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001332 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale,
1333 data_offset, rl_result.reg.GetReg(), INVALID_REG, size,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001334 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001335 StoreValue(rl_dest, rl_result);
1336 }
1337}
1338
1339/*
1340 * Generate array store
1341 *
1342 */
1343void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001344 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001345 RegisterClass reg_class = oat_reg_class_by_size(size);
1346 int len_offset = mirror::Array::LengthOffset().Int32Value();
1347 int data_offset;
1348
1349 if (size == kLong || size == kDouble) {
1350 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1351 } else {
1352 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1353 }
1354
1355 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001356 bool constant_index = rl_index.is_const;
1357 int32_t constant_index_value = 0;
1358 if (!constant_index) {
1359 rl_index = LoadValue(rl_index, kCoreReg);
1360 } else {
1361 // If index is constant, just fold it into the data offset
1362 constant_index_value = mir_graph_->ConstantValue(rl_index);
1363 data_offset += constant_index_value << scale;
1364 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001365 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001366 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001367
1368 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001369 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001370
1371 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001372 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001373 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001374 constant_index_value, kThrowConstantArrayBounds);
1375 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001376 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001377 len_offset, kThrowArrayBounds);
1378 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001379 }
1380 if ((size == kLong) || (size == kDouble)) {
1381 rl_src = LoadValueWide(rl_src, reg_class);
1382 } else {
1383 rl_src = LoadValue(rl_src, reg_class);
1384 }
1385 // If the src reg can't be byte accessed, move it to a temp first.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001386 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001387 int temp = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001388 OpRegCopy(temp, rl_src.reg.GetReg());
1389 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, temp,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001390 INVALID_REG, size, INVALID_SREG);
1391 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001392 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_src.reg.GetReg(),
1393 rl_src.wide ? rl_src.reg.GetHighReg() : INVALID_REG, size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001394 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001395 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001396 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001397 if (!constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001398 FreeTemp(rl_index.reg.GetReg());
Mark Mendell343adb52013-12-18 06:02:17 -08001399 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001400 MarkGCCard(rl_src.reg.GetReg(), rl_array.reg.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001401 }
1402}
1403
Mark Mendell4708dcd2014-01-22 09:05:18 -08001404RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1405 RegLocation rl_src, int shift_amount) {
1406 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1407 switch (opcode) {
1408 case Instruction::SHL_LONG:
1409 case Instruction::SHL_LONG_2ADDR:
1410 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1411 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001412 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1413 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001414 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001415 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1416 FreeTemp(rl_src.reg.GetHighReg());
1417 NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1418 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001419 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001420 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1421 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1422 NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), shift_amount);
1423 NewLIR2(kX86Sal32RI, rl_result.reg.GetReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001424 }
1425 break;
1426 case Instruction::SHR_LONG:
1427 case Instruction::SHR_LONG_2ADDR:
1428 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001429 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1430 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1431 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001432 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001433 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1434 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1435 NewLIR2(kX86Sar32RI, rl_result.reg.GetReg(), shift_amount - 32);
1436 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001437 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001438 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1439 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1440 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1441 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001442 }
1443 break;
1444 case Instruction::USHR_LONG:
1445 case Instruction::USHR_LONG_2ADDR:
1446 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001447 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1448 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001449 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001450 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1451 NewLIR2(kX86Shr32RI, rl_result.reg.GetReg(), shift_amount - 32);
1452 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001453 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001454 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1455 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1456 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1457 NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001458 }
1459 break;
1460 default:
1461 LOG(FATAL) << "Unexpected case";
1462 }
1463 return rl_result;
1464}
1465
Brian Carlstrom7940e442013-07-12 13:46:57 -07001466void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001467 RegLocation rl_src, RegLocation rl_shift) {
1468 // Per spec, we only care about low 6 bits of shift amount.
1469 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1470 if (shift_amount == 0) {
1471 rl_src = LoadValueWide(rl_src, kCoreReg);
1472 StoreValueWide(rl_dest, rl_src);
1473 return;
1474 } else if (shift_amount == 1 &&
1475 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1476 // Need to handle this here to avoid calling StoreValueWide twice.
1477 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1478 return;
1479 }
1480 if (BadOverlap(rl_src, rl_dest)) {
1481 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1482 return;
1483 }
1484 rl_src = LoadValueWide(rl_src, kCoreReg);
1485 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1486 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001487}
1488
1489void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001490 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001491 switch (opcode) {
1492 case Instruction::ADD_LONG:
1493 case Instruction::AND_LONG:
1494 case Instruction::OR_LONG:
1495 case Instruction::XOR_LONG:
1496 if (rl_src2.is_const) {
1497 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1498 } else {
1499 DCHECK(rl_src1.is_const);
1500 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1501 }
1502 break;
1503 case Instruction::SUB_LONG:
1504 case Instruction::SUB_LONG_2ADDR:
1505 if (rl_src2.is_const) {
1506 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1507 } else {
1508 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1509 }
1510 break;
1511 case Instruction::ADD_LONG_2ADDR:
1512 case Instruction::OR_LONG_2ADDR:
1513 case Instruction::XOR_LONG_2ADDR:
1514 case Instruction::AND_LONG_2ADDR:
1515 if (rl_src2.is_const) {
1516 GenLongImm(rl_dest, rl_src2, opcode);
1517 } else {
1518 DCHECK(rl_src1.is_const);
1519 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1520 }
1521 break;
1522 default:
1523 // Default - bail to non-const handler.
1524 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1525 break;
1526 }
1527}
1528
1529bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1530 switch (op) {
1531 case Instruction::AND_LONG_2ADDR:
1532 case Instruction::AND_LONG:
1533 return value == -1;
1534 case Instruction::OR_LONG:
1535 case Instruction::OR_LONG_2ADDR:
1536 case Instruction::XOR_LONG:
1537 case Instruction::XOR_LONG_2ADDR:
1538 return value == 0;
1539 default:
1540 return false;
1541 }
1542}
1543
1544X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1545 bool is_high_op) {
1546 bool rhs_in_mem = rhs.location != kLocPhysReg;
1547 bool dest_in_mem = dest.location != kLocPhysReg;
1548 DCHECK(!rhs_in_mem || !dest_in_mem);
1549 switch (op) {
1550 case Instruction::ADD_LONG:
1551 case Instruction::ADD_LONG_2ADDR:
1552 if (dest_in_mem) {
1553 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1554 } else if (rhs_in_mem) {
1555 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1556 }
1557 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1558 case Instruction::SUB_LONG:
1559 case Instruction::SUB_LONG_2ADDR:
1560 if (dest_in_mem) {
1561 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1562 } else if (rhs_in_mem) {
1563 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1564 }
1565 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1566 case Instruction::AND_LONG_2ADDR:
1567 case Instruction::AND_LONG:
1568 if (dest_in_mem) {
1569 return kX86And32MR;
1570 }
1571 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1572 case Instruction::OR_LONG:
1573 case Instruction::OR_LONG_2ADDR:
1574 if (dest_in_mem) {
1575 return kX86Or32MR;
1576 }
1577 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1578 case Instruction::XOR_LONG:
1579 case Instruction::XOR_LONG_2ADDR:
1580 if (dest_in_mem) {
1581 return kX86Xor32MR;
1582 }
1583 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1584 default:
1585 LOG(FATAL) << "Unexpected opcode: " << op;
1586 return kX86Add32RR;
1587 }
1588}
1589
1590X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1591 int32_t value) {
1592 bool in_mem = loc.location != kLocPhysReg;
1593 bool byte_imm = IS_SIMM8(value);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001594 DCHECK(in_mem || !IsFpReg(loc.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001595 switch (op) {
1596 case Instruction::ADD_LONG:
1597 case Instruction::ADD_LONG_2ADDR:
1598 if (byte_imm) {
1599 if (in_mem) {
1600 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1601 }
1602 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1603 }
1604 if (in_mem) {
1605 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1606 }
1607 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1608 case Instruction::SUB_LONG:
1609 case Instruction::SUB_LONG_2ADDR:
1610 if (byte_imm) {
1611 if (in_mem) {
1612 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1613 }
1614 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1615 }
1616 if (in_mem) {
1617 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1618 }
1619 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1620 case Instruction::AND_LONG_2ADDR:
1621 case Instruction::AND_LONG:
1622 if (byte_imm) {
1623 return in_mem ? kX86And32MI8 : kX86And32RI8;
1624 }
1625 return in_mem ? kX86And32MI : kX86And32RI;
1626 case Instruction::OR_LONG:
1627 case Instruction::OR_LONG_2ADDR:
1628 if (byte_imm) {
1629 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1630 }
1631 return in_mem ? kX86Or32MI : kX86Or32RI;
1632 case Instruction::XOR_LONG:
1633 case Instruction::XOR_LONG_2ADDR:
1634 if (byte_imm) {
1635 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1636 }
1637 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1638 default:
1639 LOG(FATAL) << "Unexpected opcode: " << op;
1640 return kX86Add32MI;
1641 }
1642}
1643
1644void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1645 DCHECK(rl_src.is_const);
1646 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1647 int32_t val_lo = Low32Bits(val);
1648 int32_t val_hi = High32Bits(val);
1649 rl_dest = UpdateLocWide(rl_dest);
1650
1651 // Can we just do this into memory?
1652 if ((rl_dest.location == kLocDalvikFrame) ||
1653 (rl_dest.location == kLocCompilerTemp)) {
1654 int rBase = TargetReg(kSp);
1655 int displacement = SRegOffset(rl_dest.s_reg_low);
1656
1657 if (!IsNoOp(op, val_lo)) {
1658 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1659 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1660 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1661 false /* is_load */, true /* is64bit */);
1662 }
1663 if (!IsNoOp(op, val_hi)) {
1664 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1665 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1666 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1667 false /* is_load */, true /* is64bit */);
1668 }
1669 return;
1670 }
1671
1672 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1673 DCHECK_EQ(rl_result.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001674 DCHECK(!IsFpReg(rl_result.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001675
1676 if (!IsNoOp(op, val_lo)) {
1677 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001678 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001679 }
1680 if (!IsNoOp(op, val_hi)) {
1681 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001682 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001683 }
1684 StoreValueWide(rl_dest, rl_result);
1685}
1686
1687void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1688 RegLocation rl_src2, Instruction::Code op) {
1689 DCHECK(rl_src2.is_const);
1690 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1691 int32_t val_lo = Low32Bits(val);
1692 int32_t val_hi = High32Bits(val);
1693 rl_dest = UpdateLocWide(rl_dest);
1694 rl_src1 = UpdateLocWide(rl_src1);
1695
1696 // Can we do this directly into the destination registers?
1697 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001698 rl_dest.reg.GetReg() == rl_src1.reg.GetReg() && rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1699 !IsFpReg(rl_dest.reg.GetReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001700 if (!IsNoOp(op, val_lo)) {
1701 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001702 NewLIR2(x86op, rl_dest.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001703 }
1704 if (!IsNoOp(op, val_hi)) {
1705 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001706 NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001707 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001708
1709 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001710 return;
1711 }
1712
1713 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1714 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1715
1716 // We need the values to be in a temporary
1717 RegLocation rl_result = ForceTempWide(rl_src1);
1718 if (!IsNoOp(op, val_lo)) {
1719 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001720 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001721 }
1722 if (!IsNoOp(op, val_hi)) {
1723 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001724 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001725 }
1726
1727 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001728}
1729
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001730// For final classes there are no sub-classes to check and so we can answer the instance-of
1731// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1732void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1733 RegLocation rl_dest, RegLocation rl_src) {
1734 RegLocation object = LoadValue(rl_src, kCoreReg);
1735 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001736 int result_reg = rl_result.reg.GetReg();
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001737
1738 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001739 if (result_reg == object.reg.GetReg() || result_reg >= 4) {
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001740 result_reg = AllocTypedTemp(false, kCoreReg);
1741 DCHECK_LT(result_reg, 4);
1742 }
1743
1744 // Assume that there is no match.
1745 LoadConstant(result_reg, 0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001746 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001747
1748 int check_class = AllocTypedTemp(false, kCoreReg);
1749
1750 // If Method* is already in a register, we can save a copy.
1751 RegLocation rl_method = mir_graph_->GetMethodLoc();
1752 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1753 (sizeof(mirror::Class*) * type_idx);
1754
1755 if (rl_method.location == kLocPhysReg) {
1756 if (use_declaring_class) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001757 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001758 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1759 check_class);
1760 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001761 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001762 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1763 check_class);
1764 LoadWordDisp(check_class, offset_of_type, check_class);
1765 }
1766 } else {
1767 LoadCurrMethodDirect(check_class);
1768 if (use_declaring_class) {
1769 LoadWordDisp(check_class,
1770 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1771 check_class);
1772 } else {
1773 LoadWordDisp(check_class,
1774 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1775 check_class);
1776 LoadWordDisp(check_class, offset_of_type, check_class);
1777 }
1778 }
1779
1780 // Compare the computed class to the class in the object.
1781 DCHECK_EQ(object.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001782 OpRegMem(kOpCmp, check_class, object.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001783 mirror::Object::ClassOffset().Int32Value());
1784
1785 // Set the low byte of the result to 0 or 1 from the compare condition code.
1786 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1787
1788 LIR* target = NewLIR0(kPseudoTargetLabel);
1789 null_branchover->target = target;
1790 FreeTemp(check_class);
1791 if (IsTemp(result_reg)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001792 OpRegCopy(rl_result.reg.GetReg(), result_reg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001793 FreeTemp(result_reg);
1794 }
1795 StoreValue(rl_dest, rl_result);
1796}
1797
Mark Mendell6607d972014-02-10 06:54:18 -08001798void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1799 bool type_known_abstract, bool use_declaring_class,
1800 bool can_assume_type_is_in_dex_cache,
1801 uint32_t type_idx, RegLocation rl_dest,
1802 RegLocation rl_src) {
1803 FlushAllRegs();
1804 // May generate a call - use explicit registers.
1805 LockCallTemps();
1806 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1807 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1808 // Reference must end up in kArg0.
1809 if (needs_access_check) {
1810 // Check we have access to type_idx and if not throw IllegalAccessError,
1811 // Caller function returns Class* in kArg0.
1812 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1813 type_idx, true);
1814 OpRegCopy(class_reg, TargetReg(kRet0));
1815 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1816 } else if (use_declaring_class) {
1817 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1818 LoadWordDisp(TargetReg(kArg1),
1819 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1820 } else {
1821 // Load dex cache entry into class_reg (kArg2).
1822 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1823 LoadWordDisp(TargetReg(kArg1),
1824 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1825 int32_t offset_of_type =
1826 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1827 * type_idx);
1828 LoadWordDisp(class_reg, offset_of_type, class_reg);
1829 if (!can_assume_type_is_in_dex_cache) {
1830 // Need to test presence of type in dex cache at runtime.
1831 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1832 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1833 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1834 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1835 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1836 // Rejoin code paths
1837 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1838 hop_branch->target = hop_target;
1839 }
1840 }
1841 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1842 RegLocation rl_result = GetReturn(false);
1843
1844 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001845 DCHECK_LT(rl_result.reg.GetReg(), 4);
Mark Mendell6607d972014-02-10 06:54:18 -08001846
1847 // Is the class NULL?
1848 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1849
1850 /* Load object->klass_. */
1851 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1852 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1853 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1854 LIR* branchover = nullptr;
1855 if (type_known_final) {
1856 // Ensure top 3 bytes of result are 0.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001857 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell6607d972014-02-10 06:54:18 -08001858 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1859 // Set the low byte of the result to 0 or 1 from the compare condition code.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001860 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
Mark Mendell6607d972014-02-10 06:54:18 -08001861 } else {
1862 if (!type_known_abstract) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001863 LoadConstant(rl_result.reg.GetReg(), 1); // Assume result succeeds.
Mark Mendell6607d972014-02-10 06:54:18 -08001864 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1865 }
1866 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1867 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1868 }
1869 // TODO: only clobber when type isn't final?
1870 ClobberCallerSave();
1871 /* Branch targets here. */
1872 LIR* target = NewLIR0(kPseudoTargetLabel);
1873 StoreValue(rl_dest, rl_result);
1874 branch1->target = target;
1875 if (branchover != nullptr) {
1876 branchover->target = target;
1877 }
1878}
1879
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001880void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1881 RegLocation rl_lhs, RegLocation rl_rhs) {
1882 OpKind op = kOpBkpt;
1883 bool is_div_rem = false;
1884 bool unary = false;
1885 bool shift_op = false;
1886 bool is_two_addr = false;
1887 RegLocation rl_result;
1888 switch (opcode) {
1889 case Instruction::NEG_INT:
1890 op = kOpNeg;
1891 unary = true;
1892 break;
1893 case Instruction::NOT_INT:
1894 op = kOpMvn;
1895 unary = true;
1896 break;
1897 case Instruction::ADD_INT_2ADDR:
1898 is_two_addr = true;
1899 // Fallthrough
1900 case Instruction::ADD_INT:
1901 op = kOpAdd;
1902 break;
1903 case Instruction::SUB_INT_2ADDR:
1904 is_two_addr = true;
1905 // Fallthrough
1906 case Instruction::SUB_INT:
1907 op = kOpSub;
1908 break;
1909 case Instruction::MUL_INT_2ADDR:
1910 is_two_addr = true;
1911 // Fallthrough
1912 case Instruction::MUL_INT:
1913 op = kOpMul;
1914 break;
1915 case Instruction::DIV_INT_2ADDR:
1916 is_two_addr = true;
1917 // Fallthrough
1918 case Instruction::DIV_INT:
1919 op = kOpDiv;
1920 is_div_rem = true;
1921 break;
1922 /* NOTE: returns in kArg1 */
1923 case Instruction::REM_INT_2ADDR:
1924 is_two_addr = true;
1925 // Fallthrough
1926 case Instruction::REM_INT:
1927 op = kOpRem;
1928 is_div_rem = true;
1929 break;
1930 case Instruction::AND_INT_2ADDR:
1931 is_two_addr = true;
1932 // Fallthrough
1933 case Instruction::AND_INT:
1934 op = kOpAnd;
1935 break;
1936 case Instruction::OR_INT_2ADDR:
1937 is_two_addr = true;
1938 // Fallthrough
1939 case Instruction::OR_INT:
1940 op = kOpOr;
1941 break;
1942 case Instruction::XOR_INT_2ADDR:
1943 is_two_addr = true;
1944 // Fallthrough
1945 case Instruction::XOR_INT:
1946 op = kOpXor;
1947 break;
1948 case Instruction::SHL_INT_2ADDR:
1949 is_two_addr = true;
1950 // Fallthrough
1951 case Instruction::SHL_INT:
1952 shift_op = true;
1953 op = kOpLsl;
1954 break;
1955 case Instruction::SHR_INT_2ADDR:
1956 is_two_addr = true;
1957 // Fallthrough
1958 case Instruction::SHR_INT:
1959 shift_op = true;
1960 op = kOpAsr;
1961 break;
1962 case Instruction::USHR_INT_2ADDR:
1963 is_two_addr = true;
1964 // Fallthrough
1965 case Instruction::USHR_INT:
1966 shift_op = true;
1967 op = kOpLsr;
1968 break;
1969 default:
1970 LOG(FATAL) << "Invalid word arith op: " << opcode;
1971 }
1972
1973 // Can we convert to a two address instruction?
1974 if (!is_two_addr &&
1975 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1976 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1977 is_two_addr = true;
1978 }
1979
1980 // Get the div/rem stuff out of the way.
1981 if (is_div_rem) {
1982 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1983 StoreValue(rl_dest, rl_result);
1984 return;
1985 }
1986
1987 if (unary) {
1988 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1989 rl_result = UpdateLoc(rl_dest);
1990 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001991 OpRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001992 } else {
1993 if (shift_op) {
1994 // X86 doesn't require masking and must use ECX.
1995 int t_reg = TargetReg(kCount); // rCX
1996 LoadValueDirectFixed(rl_rhs, t_reg);
1997 if (is_two_addr) {
1998 // Can we do this directly into memory?
1999 rl_result = UpdateLoc(rl_dest);
2000 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2001 if (rl_result.location != kLocPhysReg) {
2002 // Okay, we can do this into memory
2003 OpMemReg(op, rl_result, t_reg);
2004 FreeTemp(t_reg);
2005 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002006 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002007 // Can do this directly into the result register
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002008 OpRegReg(op, rl_result.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002009 FreeTemp(t_reg);
2010 StoreFinalValue(rl_dest, rl_result);
2011 return;
2012 }
2013 }
2014 // Three address form, or we can't do directly.
2015 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2016 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002017 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002018 FreeTemp(t_reg);
2019 } else {
2020 // Multiply is 3 operand only (sort of).
2021 if (is_two_addr && op != kOpMul) {
2022 // Can we do this directly into memory?
2023 rl_result = UpdateLoc(rl_dest);
2024 if (rl_result.location == kLocPhysReg) {
2025 // Can we do this from memory directly?
2026 rl_rhs = UpdateLoc(rl_rhs);
2027 if (rl_rhs.location != kLocPhysReg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002028 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002029 StoreFinalValue(rl_dest, rl_result);
2030 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002031 } else if (!IsFpReg(rl_rhs.reg.GetReg())) {
2032 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002033 StoreFinalValue(rl_dest, rl_result);
2034 return;
2035 }
2036 }
2037 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2038 if (rl_result.location != kLocPhysReg) {
2039 // Okay, we can do this into memory.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002040 OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002041 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002042 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002043 // Can do this directly into the result register.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002044 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002045 StoreFinalValue(rl_dest, rl_result);
2046 return;
2047 } else {
2048 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2049 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002050 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002051 }
2052 } else {
2053 // Try to use reg/memory instructions.
2054 rl_lhs = UpdateLoc(rl_lhs);
2055 rl_rhs = UpdateLoc(rl_rhs);
2056 // We can't optimize with FP registers.
2057 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2058 // Something is difficult, so fall back to the standard case.
2059 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2060 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2061 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002062 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002063 } else {
2064 // We can optimize by moving to result and using memory operands.
2065 if (rl_rhs.location != kLocPhysReg) {
2066 // Force LHS into result.
Serguei Katkov66da1362014-03-14 13:33:33 +07002067 // We should be careful with order here
2068 // If rl_dest and rl_lhs points to the same VR we should load first
2069 // If the are different we should find a register first for dest
2070 if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2071 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2072 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2073 } else {
2074 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2075 LoadValueDirect(rl_lhs, rl_result.reg.GetReg());
2076 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002077 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002078 } else if (rl_lhs.location != kLocPhysReg) {
2079 // RHS is in a register; LHS is in memory.
2080 if (op != kOpSub) {
2081 // Force RHS into result and operate on memory.
2082 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002083 OpRegCopy(rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2084 OpRegMem(op, rl_result.reg.GetReg(), rl_lhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002085 } else {
2086 // Subtraction isn't commutative.
2087 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2088 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2089 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002090 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002091 }
2092 } else {
2093 // Both are in registers.
2094 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2095 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2096 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002097 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002098 }
2099 }
2100 }
2101 }
2102 }
2103 StoreValue(rl_dest, rl_result);
2104}
2105
2106bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2107 // If we have non-core registers, then we can't do good things.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002108 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002109 return false;
2110 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002111 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002112 return false;
2113 }
2114
2115 // Everything will be fine :-).
2116 return true;
2117}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002118} // namespace art