blob: 9cafcee58dd0b7de08b244aaf9fd9facbd2efc08 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
Mark Mendell4028a6c2014-02-19 20:06:20 -0800178 { kX86Lea32RM, kRegMem, IS_TERTIARY_OP | IS_LOAD | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RM", "!0r,[!1r+!2d]" },
179
Brian Carlstrom7940e442013-07-12 13:46:57 -0700180 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
181
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800182 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
183
Brian Carlstrom7940e442013-07-12 13:46:57 -0700184#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
185{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
186{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
187{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
188{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
189{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
190{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
191 \
192{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
193{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
194{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
195{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
196{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
197{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
198 \
199{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
200{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
201{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
202{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
203{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
204{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
205
206 SHIFT_ENCODING_MAP(Rol, 0x0),
207 SHIFT_ENCODING_MAP(Ror, 0x1),
208 SHIFT_ENCODING_MAP(Rcl, 0x2),
209 SHIFT_ENCODING_MAP(Rcr, 0x3),
210 SHIFT_ENCODING_MAP(Sal, 0x4),
211 SHIFT_ENCODING_MAP(Shr, 0x5),
212 SHIFT_ENCODING_MAP(Sar, 0x7),
213#undef SHIFT_ENCODING_MAP
214
215 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
Mark Mendell4708dcd2014-01-22 09:05:18 -0800216 { kX86Shld32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32", "!0r,!1r,!2d" },
217 { kX86Shrd32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32", "!0r,!1r,!2d" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700218
219 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
220 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
221 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
222 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
223 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
224 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
225 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
226 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
227 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
228 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
229
230#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
231 reg, reg_kind, reg_flags, \
232 mem, mem_kind, mem_flags, \
233 arr, arr_kind, arr_flags, imm, \
234 b_flags, hw_flags, w_flags, \
235 b_format, hw_format, w_format) \
236{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
237{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
238{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
239{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
240{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
241{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
242{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
243{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
244{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
245
246 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
247 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
248
Mark Mendell2bf31e62014-01-23 12:13:40 -0800249 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
250 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
251 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
252 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700253#undef UNARY_ENCODING_MAP
254
Mark Mendell2bf31e62014-01-23 12:13:40 -0800255 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000256 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
257 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
258 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100259
Brian Carlstrom7940e442013-07-12 13:46:57 -0700260#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
261{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
262{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
263{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
264
265 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
266 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
267 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
268
269 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
270 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
271 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
272
273 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
278 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
279 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
280 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
281 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
282 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
283 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
291 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
292 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
293 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
294 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800295 EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296
297 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
298 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800299 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Razvan A Lupusoru614c2b42014-01-28 17:05:21 -0800300
Serguei Katkove90501d2014-03-12 15:56:54 +0700301 { kX86Fild32M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDB, 0x00, 0, 0, 0, 0 }, "Fild32M", "[!0r,!1d]" },
302 { kX86Fild64M, kMem, IS_LOAD | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDF, 0x00, 0, 5, 0, 0 }, "Fild64M", "[!0r,!1d]" },
303 { kX86Fstp32M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xD9, 0x00, 0, 3, 0, 0 }, "FstpsM", "[!0r,!1d]" },
304 { kX86Fstp64M, kMem, IS_STORE | IS_UNARY_OP | REG_USE0 | USE_FP_STACK, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700305
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800306 EXT_0F_ENCODING_MAP(Movups, 0x0, 0x10, REG_DEF0),
307 { kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsMR", "[!0r+!1d],!2r" },
308 { kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
309
310 EXT_0F_ENCODING_MAP(Movaps, 0x0, 0x28, REG_DEF0),
311 { kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsMR", "[!0r+!1d],!2r" },
312 { kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
313
314 { kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRM", "!0r,[!1r+!2d]" },
315 { kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
316 { kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsMR", "[!0r+!1d],!2r" },
317 { kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
318
319 { kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRM", "!0r,[!1r+!2d]" },
320 { kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
321 { kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsMR", "[!0r+!1d],!2r" },
322 { kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
323
Brian Carlstrom7940e442013-07-12 13:46:57 -0700324 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
325 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
326 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
327 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
328
329 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
330 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
331 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
332
333 // TODO: load/store?
334 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
335 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
336
337 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
338 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
339
340 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
341 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
342 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700343 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
344 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000345 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
346 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700347
348 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
349 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
350 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
351 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
352#undef EXT_0F_ENCODING_MAP
353
354 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
355 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
356 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
357 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
358 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
Mark Mendell4028a6c2014-02-19 20:06:20 -0800359 { kX86Jecxz8, kJmp, NO_OPERAND | IS_BRANCH | NEEDS_FIXUP | REG_USEC, { 0, 0, 0xE3, 0, 0, 0, 0, 0 }, "Jecxz", "!0t" },
Brian Carlstrom60d7a652014-03-13 18:10:08 -0700360 { kX86JmpT, kJmp, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpT", "fs:[!0d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700361 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
362 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
363 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
364 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Mark Mendell55d0eac2014-02-06 11:02:52 -0800365 { kX86CallI, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 4 }, "CallI", "!0d" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700366 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700367
368 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
369 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
370 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
Mark Mendell4028a6c2014-02-19 20:06:20 -0800371 { kX86RepneScasw, kPrefix2Nullary, NO_OPERAND | SETS_CCODES, { 0x66, 0xF2, 0xAF, 0, 0, 0, 0, 0 }, "RepNE ScasW", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700372};
373
374static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
375 size_t size = 0;
376 if (entry->skeleton.prefix1 > 0) {
377 ++size;
378 if (entry->skeleton.prefix2 > 0) {
379 ++size;
380 }
381 }
382 ++size; // opcode
383 if (entry->skeleton.opcode == 0x0F) {
384 ++size;
385 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
386 ++size;
387 }
388 }
389 ++size; // modrm
390 if (has_sib || base == rX86_SP) {
391 // SP requires a SIB byte.
392 ++size;
393 }
394 if (displacement != 0 || base == rBP) {
395 // BP requires an explicit displacement, even when it's 0.
396 if (entry->opcode != kX86Lea32RA) {
397 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
398 }
399 size += IS_SIMM8(displacement) ? 1 : 4;
400 }
401 size += entry->skeleton.immediate_bytes;
402 return size;
403}
404
405int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700406 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700407 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
408 switch (entry->kind) {
409 case kData:
410 return 4; // 4 bytes of data
411 case kNop:
412 return lir->operands[0]; // length of nop is sole operand
413 case kNullary:
414 return 1; // 1 byte of opcode
Mark Mendell4028a6c2014-02-19 20:06:20 -0800415 case kPrefix2Nullary:
416 return 3; // 1 byte of opcode + 2 prefixes
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100417 case kRegOpcode: // lir operands - 0: reg
418 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700419 case kReg: // lir operands - 0: reg
420 return ComputeSize(entry, 0, 0, false);
421 case kMem: // lir operands - 0: base, 1: disp
422 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
423 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
424 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
425 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
426 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
427 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
428 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
429 case kThreadReg: // lir operands - 0: disp, 1: reg
430 return ComputeSize(entry, 0, lir->operands[0], false);
431 case kRegReg:
432 return ComputeSize(entry, 0, 0, false);
433 case kRegRegStore:
434 return ComputeSize(entry, 0, 0, false);
435 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
436 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
437 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
438 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
439 case kRegThread: // lir operands - 0: reg, 1: disp
440 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
441 case kRegImm: { // lir operands - 0: reg, 1: immediate
442 size_t size = ComputeSize(entry, 0, 0, false);
443 if (entry->skeleton.ax_opcode == 0) {
444 return size;
445 } else {
446 // AX opcodes don't require the modrm byte.
447 int reg = lir->operands[0];
448 return size - (reg == rAX ? 1 : 0);
449 }
450 }
451 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
452 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
453 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
454 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
455 case kThreadImm: // lir operands - 0: disp, 1: imm
456 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
457 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
Mark Mendell4708dcd2014-01-22 09:05:18 -0800458 case kRegRegImmRev:
Brian Carlstrom7940e442013-07-12 13:46:57 -0700459 return ComputeSize(entry, 0, 0, false);
460 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
461 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
462 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
463 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
464 case kMovRegImm: // lir operands - 0: reg, 1: immediate
465 return 1 + entry->skeleton.immediate_bytes;
466 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
467 // Shift by immediate one has a shorter opcode.
468 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
469 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
470 // Shift by immediate one has a shorter opcode.
471 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
472 (lir->operands[2] == 1 ? 1 : 0);
473 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
474 // Shift by immediate one has a shorter opcode.
475 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
476 (lir->operands[4] == 1 ? 1 : 0);
477 case kShiftRegCl:
478 return ComputeSize(entry, 0, 0, false);
479 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
480 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
481 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
482 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
483 case kRegCond: // lir operands - 0: reg, 1: cond
484 return ComputeSize(entry, 0, 0, false);
485 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
486 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
487 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
488 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800489 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
490 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700491 case kJcc:
492 if (lir->opcode == kX86Jcc8) {
493 return 2; // opcode + rel8
494 } else {
495 DCHECK(lir->opcode == kX86Jcc32);
496 return 6; // 2 byte opcode + rel32
497 }
498 case kJmp:
Mark Mendell4028a6c2014-02-19 20:06:20 -0800499 if (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jecxz8) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700500 return 2; // opcode + rel8
501 } else if (lir->opcode == kX86Jmp32) {
502 return 5; // opcode + rel32
Brian Carlstrom60d7a652014-03-13 18:10:08 -0700503 } else if (lir->opcode == kX86JmpT) {
504 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
Brian Carlstrom7940e442013-07-12 13:46:57 -0700505 } else {
506 DCHECK(lir->opcode == kX86JmpR);
507 return 2; // opcode + modrm
508 }
509 case kCall:
510 switch (lir->opcode) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800511 case kX86CallI: return 5; // opcode 0:disp
Brian Carlstrom7940e442013-07-12 13:46:57 -0700512 case kX86CallR: return 2; // opcode modrm
513 case kX86CallM: // lir operands - 0: base, 1: disp
514 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
515 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
516 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
517 case kX86CallT: // lir operands - 0: disp
518 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
519 default:
520 break;
521 }
522 break;
523 case kPcRel:
524 if (entry->opcode == kX86PcRelLoadRA) {
525 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
526 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
527 } else {
528 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700529 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700530 }
531 case kMacro:
532 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
533 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
534 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
535 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
536 default:
537 break;
538 }
539 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
540 return 0;
541}
542
Vladimir Marko057c74a2013-12-03 15:20:45 +0000543void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
544 if (entry->skeleton.prefix1 != 0) {
545 code_buffer_.push_back(entry->skeleton.prefix1);
546 if (entry->skeleton.prefix2 != 0) {
547 code_buffer_.push_back(entry->skeleton.prefix2);
548 }
549 } else {
550 DCHECK_EQ(0, entry->skeleton.prefix2);
551 }
552}
553
554void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
555 code_buffer_.push_back(entry->skeleton.opcode);
556 if (entry->skeleton.opcode == 0x0F) {
557 code_buffer_.push_back(entry->skeleton.extra_opcode1);
558 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
559 code_buffer_.push_back(entry->skeleton.extra_opcode2);
560 } else {
561 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
562 }
563 } else {
564 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
565 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
566 }
567}
568
569void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
570 EmitPrefix(entry);
571 EmitOpcode(entry);
572}
573
Brian Carlstrom7940e442013-07-12 13:46:57 -0700574static uint8_t ModrmForDisp(int base, int disp) {
575 // BP requires an explicit disp, so do not omit it in the 0 case
576 if (disp == 0 && base != rBP) {
577 return 0;
578 } else if (IS_SIMM8(disp)) {
579 return 1;
580 } else {
581 return 2;
582 }
583}
584
Vladimir Marko057c74a2013-12-03 15:20:45 +0000585void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700586 // BP requires an explicit disp, so do not omit it in the 0 case
587 if (disp == 0 && base != rBP) {
588 return;
589 } else if (IS_SIMM8(disp)) {
590 code_buffer_.push_back(disp & 0xFF);
591 } else {
592 code_buffer_.push_back(disp & 0xFF);
593 code_buffer_.push_back((disp >> 8) & 0xFF);
594 code_buffer_.push_back((disp >> 16) & 0xFF);
595 code_buffer_.push_back((disp >> 24) & 0xFF);
596 }
597}
598
Vladimir Marko057c74a2013-12-03 15:20:45 +0000599void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
600 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700601 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000602 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700603 code_buffer_.push_back(modrm);
604 if (base == rX86_SP) {
605 // Special SIB for SP base
606 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
607 }
608 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700609}
610
Vladimir Marko057c74a2013-12-03 15:20:45 +0000611void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
612 int scale, int disp) {
613 DCHECK_LT(reg_or_opcode, 8);
614 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700615 code_buffer_.push_back(modrm);
616 DCHECK_LT(scale, 4);
617 DCHECK_LT(index, 8);
618 DCHECK_LT(base, 8);
619 uint8_t sib = (scale << 6) | (index << 3) | base;
620 code_buffer_.push_back(sib);
621 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700622}
623
Vladimir Marko057c74a2013-12-03 15:20:45 +0000624void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700625 switch (entry->skeleton.immediate_bytes) {
626 case 1:
627 DCHECK(IS_SIMM8(imm));
628 code_buffer_.push_back(imm & 0xFF);
629 break;
630 case 2:
631 DCHECK(IS_SIMM16(imm));
632 code_buffer_.push_back(imm & 0xFF);
633 code_buffer_.push_back((imm >> 8) & 0xFF);
634 break;
635 case 4:
636 code_buffer_.push_back(imm & 0xFF);
637 code_buffer_.push_back((imm >> 8) & 0xFF);
638 code_buffer_.push_back((imm >> 16) & 0xFF);
639 code_buffer_.push_back((imm >> 24) & 0xFF);
640 break;
641 default:
642 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
643 << ") for instruction: " << entry->name;
644 break;
645 }
646}
647
Vladimir Marko057c74a2013-12-03 15:20:45 +0000648void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
649 EmitPrefixAndOpcode(entry);
650 // There's no 3-byte instruction with +rd
651 DCHECK(entry->skeleton.opcode != 0x0F ||
652 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
653 DCHECK(!X86_FPREG(reg));
654 DCHECK_LT(reg, 8);
655 code_buffer_.back() += reg;
656 DCHECK_EQ(0, entry->skeleton.ax_opcode);
657 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
658}
659
660void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
661 EmitPrefixAndOpcode(entry);
662 if (X86_FPREG(reg)) {
663 reg = reg & X86_FP_REG_MASK;
664 }
665 if (reg >= 4) {
666 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
667 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
668 }
669 DCHECK_LT(reg, 8);
670 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
671 code_buffer_.push_back(modrm);
672 DCHECK_EQ(0, entry->skeleton.ax_opcode);
673 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
674}
675
676void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
677 EmitPrefix(entry);
678 code_buffer_.push_back(entry->skeleton.opcode);
679 DCHECK_NE(0x0F, entry->skeleton.opcode);
680 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
681 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000682 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
683 DCHECK_EQ(0, entry->skeleton.ax_opcode);
684 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
685}
686
687void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
688 int scale, int disp) {
689 EmitPrefixAndOpcode(entry);
690 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
691 DCHECK_EQ(0, entry->skeleton.ax_opcode);
692 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
693}
694
695void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
696 uint8_t base, int disp, uint8_t reg) {
697 EmitPrefixAndOpcode(entry);
698 if (X86_FPREG(reg)) {
699 reg = reg & X86_FP_REG_MASK;
700 }
701 if (reg >= 4) {
702 DCHECK(strchr(entry->name, '8') == NULL ||
703 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
704 << entry->name << " " << static_cast<int>(reg)
705 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
706 }
707 EmitModrmDisp(reg, base, disp);
708 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
709 DCHECK_EQ(0, entry->skeleton.ax_opcode);
710 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
711}
712
713void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
714 uint8_t reg, uint8_t base, int disp) {
715 // Opcode will flip operands.
716 EmitMemReg(entry, base, disp, reg);
717}
718
719void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
720 int scale, int disp) {
721 EmitPrefixAndOpcode(entry);
722 if (X86_FPREG(reg)) {
723 reg = reg & X86_FP_REG_MASK;
724 }
725 EmitModrmSibDisp(reg, base, index, scale, disp);
726 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
727 DCHECK_EQ(0, entry->skeleton.ax_opcode);
728 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
729}
730
731void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
732 uint8_t reg) {
733 // Opcode will flip operands.
734 EmitRegArray(entry, reg, base, index, scale, disp);
735}
736
737void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
738 DCHECK_NE(entry->skeleton.prefix1, 0);
739 EmitPrefixAndOpcode(entry);
740 if (X86_FPREG(reg)) {
741 reg = reg & X86_FP_REG_MASK;
742 }
743 if (reg >= 4) {
744 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
745 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
746 }
747 DCHECK_LT(reg, 8);
748 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
749 code_buffer_.push_back(modrm);
750 code_buffer_.push_back(disp & 0xFF);
751 code_buffer_.push_back((disp >> 8) & 0xFF);
752 code_buffer_.push_back((disp >> 16) & 0xFF);
753 code_buffer_.push_back((disp >> 24) & 0xFF);
754 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
755 DCHECK_EQ(0, entry->skeleton.ax_opcode);
756 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
757}
758
759void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
760 EmitPrefixAndOpcode(entry);
761 if (X86_FPREG(reg1)) {
762 reg1 = reg1 & X86_FP_REG_MASK;
763 }
764 if (X86_FPREG(reg2)) {
765 reg2 = reg2 & X86_FP_REG_MASK;
766 }
767 DCHECK_LT(reg1, 8);
768 DCHECK_LT(reg2, 8);
769 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
770 code_buffer_.push_back(modrm);
771 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
772 DCHECK_EQ(0, entry->skeleton.ax_opcode);
773 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
774}
775
776void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
777 uint8_t reg1, uint8_t reg2, int32_t imm) {
778 EmitPrefixAndOpcode(entry);
779 if (X86_FPREG(reg1)) {
780 reg1 = reg1 & X86_FP_REG_MASK;
781 }
782 if (X86_FPREG(reg2)) {
783 reg2 = reg2 & X86_FP_REG_MASK;
784 }
785 DCHECK_LT(reg1, 8);
786 DCHECK_LT(reg2, 8);
787 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
788 code_buffer_.push_back(modrm);
789 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
790 DCHECK_EQ(0, entry->skeleton.ax_opcode);
791 EmitImm(entry, imm);
792}
793
Mark Mendell4708dcd2014-01-22 09:05:18 -0800794void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
795 uint8_t reg1, uint8_t reg2, int32_t imm) {
796 EmitRegRegImm(entry, reg2, reg1, imm);
797}
798
799void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
800 uint8_t reg, uint8_t base, int disp, int32_t imm) {
801 EmitPrefixAndOpcode(entry);
802 DCHECK(!X86_FPREG(reg));
803 DCHECK_LT(reg, 8);
804 EmitModrmDisp(reg, base, disp);
805 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
806 DCHECK_EQ(0, entry->skeleton.ax_opcode);
807 EmitImm(entry, imm);
808}
809
Brian Carlstrom7940e442013-07-12 13:46:57 -0700810void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
811 if (entry->skeleton.prefix1 != 0) {
812 code_buffer_.push_back(entry->skeleton.prefix1);
813 if (entry->skeleton.prefix2 != 0) {
814 code_buffer_.push_back(entry->skeleton.prefix2);
815 }
816 } else {
817 DCHECK_EQ(0, entry->skeleton.prefix2);
818 }
819 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
820 code_buffer_.push_back(entry->skeleton.ax_opcode);
821 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000822 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700823 if (X86_FPREG(reg)) {
824 reg = reg & X86_FP_REG_MASK;
825 }
826 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
827 code_buffer_.push_back(modrm);
828 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000829 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700830}
831
Mark Mendell343adb52013-12-18 06:02:17 -0800832void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
833 EmitPrefixAndOpcode(entry);
834 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
835 DCHECK_EQ(0, entry->skeleton.ax_opcode);
836 EmitImm(entry, imm);
837}
838
Brian Carlstrom7940e442013-07-12 13:46:57 -0700839void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000840 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700841 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
842 code_buffer_.push_back(modrm);
843 code_buffer_.push_back(disp & 0xFF);
844 code_buffer_.push_back((disp >> 8) & 0xFF);
845 code_buffer_.push_back((disp >> 16) & 0xFF);
846 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000847 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700848 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
849}
850
851void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
852 DCHECK_LT(reg, 8);
853 code_buffer_.push_back(0xB8 + reg);
854 code_buffer_.push_back(imm & 0xFF);
855 code_buffer_.push_back((imm >> 8) & 0xFF);
856 code_buffer_.push_back((imm >> 16) & 0xFF);
857 code_buffer_.push_back((imm >> 24) & 0xFF);
858}
859
860void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000861 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700862 if (imm != 1) {
863 code_buffer_.push_back(entry->skeleton.opcode);
864 } else {
865 // Shorter encoding for 1 bit shift
866 code_buffer_.push_back(entry->skeleton.ax_opcode);
867 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000868 DCHECK_NE(0x0F, entry->skeleton.opcode);
869 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
870 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700871 if (reg >= 4) {
872 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
873 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
874 }
875 DCHECK_LT(reg, 8);
876 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
877 code_buffer_.push_back(modrm);
878 if (imm != 1) {
879 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
880 DCHECK(IS_SIMM8(imm));
881 code_buffer_.push_back(imm & 0xFF);
882 }
883}
884
885void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
886 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000887 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700888 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000889 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700890 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
891 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
892 DCHECK_LT(reg, 8);
893 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
894 code_buffer_.push_back(modrm);
895 DCHECK_EQ(0, entry->skeleton.ax_opcode);
896 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
897}
898
Mark Mendellfeb2b4e2014-01-28 12:59:49 -0800899void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base,
900 int displacement, uint8_t cl) {
901 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
902 EmitPrefix(entry);
903 code_buffer_.push_back(entry->skeleton.opcode);
904 DCHECK_NE(0x0F, entry->skeleton.opcode);
905 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
906 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
907 DCHECK_LT(base, 8);
908 EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
909 DCHECK_EQ(0, entry->skeleton.ax_opcode);
910 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
911}
912
Brian Carlstrom7940e442013-07-12 13:46:57 -0700913void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
914 if (entry->skeleton.prefix1 != 0) {
915 code_buffer_.push_back(entry->skeleton.prefix1);
916 if (entry->skeleton.prefix2 != 0) {
917 code_buffer_.push_back(entry->skeleton.prefix2);
918 }
919 } else {
920 DCHECK_EQ(0, entry->skeleton.prefix2);
921 }
922 DCHECK_EQ(0, entry->skeleton.ax_opcode);
923 DCHECK_EQ(0x0F, entry->skeleton.opcode);
924 code_buffer_.push_back(0x0F);
925 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
926 code_buffer_.push_back(0x90 | condition);
927 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
928 DCHECK_LT(reg, 8);
929 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
930 code_buffer_.push_back(modrm);
931 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
932}
933
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800934void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
935 // Generate prefix and opcode without the condition
936 EmitPrefixAndOpcode(entry);
937
938 // Now add the condition. The last byte of opcode is the one that receives it.
939 DCHECK_LE(condition, 0xF);
940 code_buffer_.back() += condition;
941
942 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
943 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
944 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
945
946 // Check that registers requested for encoding are sane.
947 DCHECK_LT(reg1, 8);
948 DCHECK_LT(reg2, 8);
949
950 // For register to register encoding, the mod is 3.
951 const uint8_t mod = (3 << 6);
952
953 // Encode the ModR/M byte now.
954 const uint8_t modrm = mod | (reg1 << 3) | reg2;
955 code_buffer_.push_back(modrm);
956}
957
Brian Carlstrom7940e442013-07-12 13:46:57 -0700958void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
959 if (entry->opcode == kX86Jmp8) {
960 DCHECK(IS_SIMM8(rel));
961 code_buffer_.push_back(0xEB);
962 code_buffer_.push_back(rel & 0xFF);
963 } else if (entry->opcode == kX86Jmp32) {
964 code_buffer_.push_back(0xE9);
965 code_buffer_.push_back(rel & 0xFF);
966 code_buffer_.push_back((rel >> 8) & 0xFF);
967 code_buffer_.push_back((rel >> 16) & 0xFF);
968 code_buffer_.push_back((rel >> 24) & 0xFF);
Mark Mendell4028a6c2014-02-19 20:06:20 -0800969 } else if (entry->opcode == kX86Jecxz8) {
970 DCHECK(IS_SIMM8(rel));
971 code_buffer_.push_back(0xE3);
972 code_buffer_.push_back(rel & 0xFF);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700973 } else {
974 DCHECK(entry->opcode == kX86JmpR);
975 code_buffer_.push_back(entry->skeleton.opcode);
976 uint8_t reg = static_cast<uint8_t>(rel);
977 DCHECK_LT(reg, 8);
978 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
979 code_buffer_.push_back(modrm);
980 }
981}
982
983void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
984 DCHECK_LT(cc, 16);
985 if (entry->opcode == kX86Jcc8) {
986 DCHECK(IS_SIMM8(rel));
987 code_buffer_.push_back(0x70 | cc);
988 code_buffer_.push_back(rel & 0xFF);
989 } else {
990 DCHECK(entry->opcode == kX86Jcc32);
991 code_buffer_.push_back(0x0F);
992 code_buffer_.push_back(0x80 | cc);
993 code_buffer_.push_back(rel & 0xFF);
994 code_buffer_.push_back((rel >> 8) & 0xFF);
995 code_buffer_.push_back((rel >> 16) & 0xFF);
996 code_buffer_.push_back((rel >> 24) & 0xFF);
997 }
998}
999
1000void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +00001001 EmitPrefixAndOpcode(entry);
1002 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001003 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1004 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1005}
1006
Mark Mendell55d0eac2014-02-06 11:02:52 -08001007void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int disp) {
1008 EmitPrefixAndOpcode(entry);
1009 DCHECK_EQ(4, entry->skeleton.immediate_bytes);
1010 code_buffer_.push_back(disp & 0xFF);
1011 code_buffer_.push_back((disp >> 8) & 0xFF);
1012 code_buffer_.push_back((disp >> 16) & 0xFF);
1013 code_buffer_.push_back((disp >> 24) & 0xFF);
1014 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1015}
1016
Brian Carlstrom7940e442013-07-12 13:46:57 -07001017void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
1018 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001019 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001020 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
1021 code_buffer_.push_back(modrm);
1022 code_buffer_.push_back(disp & 0xFF);
1023 code_buffer_.push_back((disp >> 8) & 0xFF);
1024 code_buffer_.push_back((disp >> 16) & 0xFF);
1025 code_buffer_.push_back((disp >> 24) & 0xFF);
1026 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1027 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1028}
1029
1030void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1031 int base_or_table, uint8_t index, int scale, int table_or_disp) {
1032 int disp;
1033 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -07001034 Mir2Lir::EmbeddedData *tab_rec =
1035 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001036 disp = tab_rec->offset;
1037 } else {
1038 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -07001039 Mir2Lir::EmbeddedData *tab_rec =
1040 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001041 disp = tab_rec->offset;
1042 }
Vladimir Marko057c74a2013-12-03 15:20:45 +00001043 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001044 if (X86_FPREG(reg)) {
1045 reg = reg & X86_FP_REG_MASK;
1046 }
1047 DCHECK_LT(reg, 8);
1048 if (entry->opcode == kX86PcRelLoadRA) {
1049 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001050 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001051 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1052 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1053 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1054 code_buffer_.push_back(modrm);
1055 DCHECK_LT(scale, 4);
1056 DCHECK_LT(index, 8);
1057 DCHECK_LT(base_or_table, 8);
1058 uint8_t base = static_cast<uint8_t>(base_or_table);
1059 uint8_t sib = (scale << 6) | (index << 3) | base;
1060 code_buffer_.push_back(sib);
1061 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1062 } else {
1063 code_buffer_.push_back(entry->skeleton.opcode + reg);
1064 }
1065 code_buffer_.push_back(disp & 0xFF);
1066 code_buffer_.push_back((disp >> 8) & 0xFF);
1067 code_buffer_.push_back((disp >> 16) & 0xFF);
1068 code_buffer_.push_back((disp >> 24) & 0xFF);
1069 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1070 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1071}
1072
1073void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1074 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1075 code_buffer_.push_back(0xE8); // call +0
1076 code_buffer_.push_back(0);
1077 code_buffer_.push_back(0);
1078 code_buffer_.push_back(0);
1079 code_buffer_.push_back(0);
1080
1081 DCHECK_LT(reg, 8);
1082 code_buffer_.push_back(0x58 + reg); // pop reg
1083
1084 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1085}
1086
1087void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1088 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1089 << BuildInsnString(entry->fmt, lir, 0);
1090 for (int i = 0; i < GetInsnSize(lir); ++i) {
1091 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1092 }
1093}
1094
1095/*
1096 * Assemble the LIR into binary instruction format. Note that we may
1097 * discover that pc-relative displacements may not fit the selected
1098 * instruction. In those cases we will try to substitute a new code
1099 * sequence or request that the trace be shortened and retried.
1100 */
buzbee0d829482013-10-11 15:24:55 -07001101AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001102 LIR *lir;
1103 AssemblerStatus res = kSuccess; // Assume success
1104
1105 const bool kVerbosePcFixup = false;
1106 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001107 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001108 continue;
1109 }
1110
1111 if (lir->flags.is_nop) {
1112 continue;
1113 }
1114
buzbeeb48819d2013-09-14 16:15:25 -07001115 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001116 switch (lir->opcode) {
1117 case kX86Jcc8: {
1118 LIR *target_lir = lir->target;
1119 DCHECK(target_lir != NULL);
1120 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001121 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001122 if (IS_SIMM8(lir->operands[0])) {
1123 pc = lir->offset + 2 /* opcode + rel8 */;
1124 } else {
1125 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1126 }
buzbee0d829482013-10-11 15:24:55 -07001127 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001128 delta = target - pc;
1129 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1130 if (kVerbosePcFixup) {
1131 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1132 << " delta: " << delta << " old delta: " << lir->operands[0];
1133 }
1134 lir->opcode = kX86Jcc32;
1135 SetupResourceMasks(lir);
1136 res = kRetryAll;
1137 }
1138 if (kVerbosePcFixup) {
1139 LOG(INFO) << "Source:";
1140 DumpLIRInsn(lir, 0);
1141 LOG(INFO) << "Target:";
1142 DumpLIRInsn(target_lir, 0);
1143 LOG(INFO) << "Delta " << delta;
1144 }
1145 lir->operands[0] = delta;
1146 break;
1147 }
1148 case kX86Jcc32: {
1149 LIR *target_lir = lir->target;
1150 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001151 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1152 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001153 int delta = target - pc;
1154 if (kVerbosePcFixup) {
1155 LOG(INFO) << "Source:";
1156 DumpLIRInsn(lir, 0);
1157 LOG(INFO) << "Target:";
1158 DumpLIRInsn(target_lir, 0);
1159 LOG(INFO) << "Delta " << delta;
1160 }
1161 lir->operands[0] = delta;
1162 break;
1163 }
Mark Mendell4028a6c2014-02-19 20:06:20 -08001164 case kX86Jecxz8: {
1165 LIR *target_lir = lir->target;
1166 DCHECK(target_lir != NULL);
1167 CodeOffset pc;
1168 pc = lir->offset + 2; // opcode + rel8
1169 CodeOffset target = target_lir->offset;
1170 int delta = target - pc;
1171 lir->operands[0] = delta;
1172 DCHECK(IS_SIMM8(delta));
1173 break;
1174 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001175 case kX86Jmp8: {
1176 LIR *target_lir = lir->target;
1177 DCHECK(target_lir != NULL);
1178 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001179 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001180 if (IS_SIMM8(lir->operands[0])) {
1181 pc = lir->offset + 2 /* opcode + rel8 */;
1182 } else {
1183 pc = lir->offset + 5 /* opcode + rel32 */;
1184 }
buzbee0d829482013-10-11 15:24:55 -07001185 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001186 delta = target - pc;
1187 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1188 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001189 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001190 if (kVerbosePcFixup) {
1191 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1192 }
1193 res = kRetryAll;
1194 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1195 if (kVerbosePcFixup) {
1196 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1197 }
1198 lir->opcode = kX86Jmp32;
1199 SetupResourceMasks(lir);
1200 res = kRetryAll;
1201 }
1202 lir->operands[0] = delta;
1203 break;
1204 }
1205 case kX86Jmp32: {
1206 LIR *target_lir = lir->target;
1207 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001208 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1209 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001210 int delta = target - pc;
1211 lir->operands[0] = delta;
1212 break;
1213 }
1214 default:
Mark Mendell67c39c42014-01-31 17:28:00 -08001215 if (lir->flags.fixup == kFixupLoad) {
1216 LIR *target_lir = lir->target;
1217 DCHECK(target_lir != NULL);
1218 CodeOffset target = target_lir->offset;
1219 lir->operands[2] = target;
1220 int newSize = GetInsnSize(lir);
1221 if (newSize != lir->flags.size) {
1222 lir->flags.size = newSize;
1223 res = kRetryAll;
1224 }
1225 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001226 break;
1227 }
1228 }
1229
1230 /*
1231 * If one of the pc-relative instructions expanded we'll have
1232 * to make another pass. Don't bother to fully assemble the
1233 * instruction.
1234 */
1235 if (res != kSuccess) {
1236 continue;
1237 }
1238 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1239 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1240 size_t starting_cbuf_size = code_buffer_.size();
1241 switch (entry->kind) {
1242 case kData: // 4 bytes of data
1243 code_buffer_.push_back(lir->operands[0]);
1244 break;
1245 case kNullary: // 1 byte of opcode
1246 DCHECK_EQ(0, entry->skeleton.prefix1);
1247 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001248 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001249 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1250 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1251 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1252 break;
Mark Mendell4028a6c2014-02-19 20:06:20 -08001253 case kPrefix2Nullary: // 1 byte of opcode + 2 prefixes.
1254 DCHECK_NE(0, entry->skeleton.prefix1);
1255 DCHECK_NE(0, entry->skeleton.prefix2);
1256 EmitPrefixAndOpcode(entry);
1257 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1258 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1259 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1260 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001261 case kRegOpcode: // lir operands - 0: reg
1262 EmitOpRegOpcode(entry, lir->operands[0]);
1263 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001264 case kReg: // lir operands - 0: reg
1265 EmitOpReg(entry, lir->operands[0]);
1266 break;
1267 case kMem: // lir operands - 0: base, 1: disp
1268 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1269 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001270 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1271 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1272 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001273 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1274 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1275 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001276 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1277 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1278 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001279 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1280 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1281 lir->operands[3], lir->operands[4]);
1282 break;
1283 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1284 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1285 break;
1286 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1287 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1288 lir->operands[3], lir->operands[4]);
1289 break;
1290 case kRegThread: // lir operands - 0: reg, 1: disp
1291 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1292 break;
1293 case kRegReg: // lir operands - 0: reg1, 1: reg2
1294 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1295 break;
1296 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1297 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1298 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001299 case kRegRegImmRev:
1300 EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1301 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001302 case kRegRegImm:
1303 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1304 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001305 case kRegMemImm:
1306 EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1307 lir->operands[3]);
1308 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001309 case kRegImm: // lir operands - 0: reg, 1: immediate
1310 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1311 break;
1312 case kThreadImm: // lir operands - 0: disp, 1: immediate
1313 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1314 break;
1315 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1316 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1317 break;
1318 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1319 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1320 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001321 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001322 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1323 break;
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001324 case kShiftMemCl: // lir operands - 0: base, 1:displacement, 2: cl
1325 EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1326 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001327 case kRegCond: // lir operands - 0: reg, 1: condition
1328 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1329 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001330 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1331 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1332 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001333 case kJmp: // lir operands - 0: rel
Brian Carlstrom60d7a652014-03-13 18:10:08 -07001334 if (entry->opcode == kX86JmpT) {
1335 // This works since the instruction format for jmp and call is basically the same and
1336 // EmitCallThread loads opcode info.
1337 EmitCallThread(entry, lir->operands[0]);
1338 } else {
1339 EmitJmp(entry, lir->operands[0]);
1340 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001341 break;
1342 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1343 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1344 break;
1345 case kCall:
1346 switch (entry->opcode) {
Mark Mendell55d0eac2014-02-06 11:02:52 -08001347 case kX86CallI: // lir operands - 0: disp
1348 EmitCallImmediate(entry, lir->operands[0]);
1349 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001350 case kX86CallM: // lir operands - 0: base, 1: disp
1351 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1352 break;
1353 case kX86CallT: // lir operands - 0: disp
1354 EmitCallThread(entry, lir->operands[0]);
1355 break;
1356 default:
1357 EmitUnimplemented(entry, lir);
1358 break;
1359 }
1360 break;
1361 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1362 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1363 lir->operands[3], lir->operands[4]);
1364 break;
1365 case kMacro:
1366 EmitMacro(entry, lir->operands[0], lir->offset);
1367 break;
1368 default:
1369 EmitUnimplemented(entry, lir);
1370 break;
1371 }
1372 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1373 code_buffer_.size() - starting_cbuf_size)
1374 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1375 }
1376 return res;
1377}
1378
buzbeeb48819d2013-09-14 16:15:25 -07001379// LIR offset assignment.
1380// TODO: consolidate w/ Arm assembly mechanism.
1381int X86Mir2Lir::AssignInsnOffsets() {
1382 LIR* lir;
1383 int offset = 0;
1384
1385 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1386 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001387 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001388 if (!lir->flags.is_nop) {
1389 offset += lir->flags.size;
1390 }
1391 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1392 if (offset & 0x2) {
1393 offset += 2;
1394 lir->operands[0] = 1;
1395 } else {
1396 lir->operands[0] = 0;
1397 }
1398 }
1399 /* Pseudo opcodes don't consume space */
1400 }
1401 return offset;
1402}
1403
1404/*
1405 * Walk the compilation unit and assign offsets to instructions
1406 * and literals and compute the total size of the compiled unit.
1407 * TODO: consolidate w/ Arm assembly mechanism.
1408 */
1409void X86Mir2Lir::AssignOffsets() {
1410 int offset = AssignInsnOffsets();
1411
1412 /* Const values have to be word aligned */
1413 offset = (offset + 3) & ~3;
1414
1415 /* Set up offsets for literals */
1416 data_offset_ = offset;
1417
1418 offset = AssignLiteralOffset(offset);
1419
1420 offset = AssignSwitchTablesOffset(offset);
1421
1422 offset = AssignFillArrayDataOffset(offset);
1423
1424 total_size_ = offset;
1425}
1426
1427/*
1428 * Go over each instruction in the list and calculate the offset from the top
1429 * before sending them off to the assembler. If out-of-range branch distance is
1430 * seen rearrange the instructions a bit to correct it.
1431 * TODO: consolidate w/ Arm assembly mechanism.
1432 */
1433void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001434 cu_->NewTimingSplit("Assemble");
Mark Mendell55d0eac2014-02-06 11:02:52 -08001435
1436 // We will remove the method address if we never ended up using it
1437 if (store_method_addr_ && !store_method_addr_used_) {
1438 setup_method_address_[0]->flags.is_nop = true;
1439 setup_method_address_[1]->flags.is_nop = true;
1440 }
1441
buzbeeb48819d2013-09-14 16:15:25 -07001442 AssignOffsets();
1443 int assembler_retries = 0;
1444 /*
1445 * Assemble here. Note that we generate code with optimistic assumptions
1446 * and if found now to work, we'll have to redo the sequence and retry.
1447 */
1448
1449 while (true) {
1450 AssemblerStatus res = AssembleInstructions(0);
1451 if (res == kSuccess) {
1452 break;
1453 } else {
1454 assembler_retries++;
1455 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1456 CodegenDump();
1457 LOG(FATAL) << "Assembler error - too many retries";
1458 }
1459 // Redo offsets and try again
1460 AssignOffsets();
1461 code_buffer_.clear();
1462 }
1463 }
1464
1465 // Install literals
1466 InstallLiteralPools();
1467
1468 // Install switch tables
1469 InstallSwitchTables();
1470
1471 // Install fill array data
1472 InstallFillArrayData();
1473
1474 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001475 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001476 CreateMappingTables();
1477
buzbeea61f4952013-08-23 14:27:06 -07001478 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001479 CreateNativeGcMap();
1480}
1481
Brian Carlstrom7940e442013-07-12 13:46:57 -07001482} // namespace art