blob: 321c6a72115cfe9b6992fcae56955c3fd5b3f051 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
Mark Mendell4708dcd2014-01-22 09:05:18 -0800214 { kX86Shld32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32", "!0r,!1r,!2d" },
215 { kX86Shrd32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32", "!0r,!1r,!2d" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700216
217 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
218 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
219 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
220 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
221 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
222 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
223 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
224 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
225 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
226 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
227
228#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
229 reg, reg_kind, reg_flags, \
230 mem, mem_kind, mem_flags, \
231 arr, arr_kind, arr_flags, imm, \
232 b_flags, hw_flags, w_flags, \
233 b_format, hw_format, w_format) \
234{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
235{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
236{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
237{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
238{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
239{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
240{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
241{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
242{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
243
244 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
245 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
246
Mark Mendell2bf31e62014-01-23 12:13:40 -0800247 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
248 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
249 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
250 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700251#undef UNARY_ENCODING_MAP
252
Mark Mendell2bf31e62014-01-23 12:13:40 -0800253 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000254 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
255 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
256 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100257
Brian Carlstrom7940e442013-07-12 13:46:57 -0700258#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
259{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
260{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
261{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
262
263 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
264 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
265 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
266
267 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
268 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
269 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
270
271 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
279 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
280 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
281 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
291 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
292 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800293 EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700294
295 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
296 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800297 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000298 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700299
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800300 EXT_0F_ENCODING_MAP(Movups, 0x0, 0x10, REG_DEF0),
301 { kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsMR", "[!0r+!1d],!2r" },
302 { kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
303
304 EXT_0F_ENCODING_MAP(Movaps, 0x0, 0x28, REG_DEF0),
305 { kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsMR", "[!0r+!1d],!2r" },
306 { kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
307
308 { kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRM", "!0r,[!1r+!2d]" },
309 { kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
310 { kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsMR", "[!0r+!1d],!2r" },
311 { kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
312
313 { kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRM", "!0r,[!1r+!2d]" },
314 { kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
315 { kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsMR", "[!0r+!1d],!2r" },
316 { kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
317
Brian Carlstrom7940e442013-07-12 13:46:57 -0700318 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
319 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
320 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
321 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
322
323 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
324 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
325 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
326
327 // TODO: load/store?
328 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
329 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
330
331 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
332 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
333
334 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
335 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
336 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700337 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
338 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000339 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
340 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700341
342 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
343 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
344 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
345 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
346#undef EXT_0F_ENCODING_MAP
347
348 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
349 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
350 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
351 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
352 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
353 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
354 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
355 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
356 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Mark Mendell55d0eac2014-02-06 11:02:52 -0800357 { kX86CallI, kCall, IS_UNARY_OP | IS_BRANCH, { 0, 0, 0xE8, 0, 0, 0, 0, 4 }, "CallI", "!0d" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700358 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700359
360 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
361 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
362 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
363};
364
365static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
366 size_t size = 0;
367 if (entry->skeleton.prefix1 > 0) {
368 ++size;
369 if (entry->skeleton.prefix2 > 0) {
370 ++size;
371 }
372 }
373 ++size; // opcode
374 if (entry->skeleton.opcode == 0x0F) {
375 ++size;
376 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
377 ++size;
378 }
379 }
380 ++size; // modrm
381 if (has_sib || base == rX86_SP) {
382 // SP requires a SIB byte.
383 ++size;
384 }
385 if (displacement != 0 || base == rBP) {
386 // BP requires an explicit displacement, even when it's 0.
387 if (entry->opcode != kX86Lea32RA) {
388 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
389 }
390 size += IS_SIMM8(displacement) ? 1 : 4;
391 }
392 size += entry->skeleton.immediate_bytes;
393 return size;
394}
395
396int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700397 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700398 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
399 switch (entry->kind) {
400 case kData:
401 return 4; // 4 bytes of data
402 case kNop:
403 return lir->operands[0]; // length of nop is sole operand
404 case kNullary:
405 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100406 case kRegOpcode: // lir operands - 0: reg
407 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700408 case kReg: // lir operands - 0: reg
409 return ComputeSize(entry, 0, 0, false);
410 case kMem: // lir operands - 0: base, 1: disp
411 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
412 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
413 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
414 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
415 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
416 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
417 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
418 case kThreadReg: // lir operands - 0: disp, 1: reg
419 return ComputeSize(entry, 0, lir->operands[0], false);
420 case kRegReg:
421 return ComputeSize(entry, 0, 0, false);
422 case kRegRegStore:
423 return ComputeSize(entry, 0, 0, false);
424 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
425 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
426 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
427 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
428 case kRegThread: // lir operands - 0: reg, 1: disp
429 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
430 case kRegImm: { // lir operands - 0: reg, 1: immediate
431 size_t size = ComputeSize(entry, 0, 0, false);
432 if (entry->skeleton.ax_opcode == 0) {
433 return size;
434 } else {
435 // AX opcodes don't require the modrm byte.
436 int reg = lir->operands[0];
437 return size - (reg == rAX ? 1 : 0);
438 }
439 }
440 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
441 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
442 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
443 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
444 case kThreadImm: // lir operands - 0: disp, 1: imm
445 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
446 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
Mark Mendell4708dcd2014-01-22 09:05:18 -0800447 case kRegRegImmRev:
Brian Carlstrom7940e442013-07-12 13:46:57 -0700448 return ComputeSize(entry, 0, 0, false);
449 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
450 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
451 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
452 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
453 case kMovRegImm: // lir operands - 0: reg, 1: immediate
454 return 1 + entry->skeleton.immediate_bytes;
455 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
456 // Shift by immediate one has a shorter opcode.
457 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
458 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
459 // Shift by immediate one has a shorter opcode.
460 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
461 (lir->operands[2] == 1 ? 1 : 0);
462 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
463 // Shift by immediate one has a shorter opcode.
464 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
465 (lir->operands[4] == 1 ? 1 : 0);
466 case kShiftRegCl:
467 return ComputeSize(entry, 0, 0, false);
468 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
469 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
470 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
471 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
472 case kRegCond: // lir operands - 0: reg, 1: cond
473 return ComputeSize(entry, 0, 0, false);
474 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
475 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
476 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
477 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800478 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
479 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700480 case kJcc:
481 if (lir->opcode == kX86Jcc8) {
482 return 2; // opcode + rel8
483 } else {
484 DCHECK(lir->opcode == kX86Jcc32);
485 return 6; // 2 byte opcode + rel32
486 }
487 case kJmp:
488 if (lir->opcode == kX86Jmp8) {
489 return 2; // opcode + rel8
490 } else if (lir->opcode == kX86Jmp32) {
491 return 5; // opcode + rel32
492 } else {
493 DCHECK(lir->opcode == kX86JmpR);
494 return 2; // opcode + modrm
495 }
496 case kCall:
497 switch (lir->opcode) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800498 case kX86CallI: return 5; // opcode 0:disp
Brian Carlstrom7940e442013-07-12 13:46:57 -0700499 case kX86CallR: return 2; // opcode modrm
500 case kX86CallM: // lir operands - 0: base, 1: disp
501 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
502 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
503 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
504 case kX86CallT: // lir operands - 0: disp
505 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
506 default:
507 break;
508 }
509 break;
510 case kPcRel:
511 if (entry->opcode == kX86PcRelLoadRA) {
512 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
513 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
514 } else {
515 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700516 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700517 }
518 case kMacro:
519 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
520 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
521 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
522 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
523 default:
524 break;
525 }
526 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
527 return 0;
528}
529
Vladimir Marko057c74a2013-12-03 15:20:45 +0000530void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
531 if (entry->skeleton.prefix1 != 0) {
532 code_buffer_.push_back(entry->skeleton.prefix1);
533 if (entry->skeleton.prefix2 != 0) {
534 code_buffer_.push_back(entry->skeleton.prefix2);
535 }
536 } else {
537 DCHECK_EQ(0, entry->skeleton.prefix2);
538 }
539}
540
541void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
542 code_buffer_.push_back(entry->skeleton.opcode);
543 if (entry->skeleton.opcode == 0x0F) {
544 code_buffer_.push_back(entry->skeleton.extra_opcode1);
545 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
546 code_buffer_.push_back(entry->skeleton.extra_opcode2);
547 } else {
548 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
549 }
550 } else {
551 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
552 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
553 }
554}
555
556void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
557 EmitPrefix(entry);
558 EmitOpcode(entry);
559}
560
Brian Carlstrom7940e442013-07-12 13:46:57 -0700561static uint8_t ModrmForDisp(int base, int disp) {
562 // BP requires an explicit disp, so do not omit it in the 0 case
563 if (disp == 0 && base != rBP) {
564 return 0;
565 } else if (IS_SIMM8(disp)) {
566 return 1;
567 } else {
568 return 2;
569 }
570}
571
Vladimir Marko057c74a2013-12-03 15:20:45 +0000572void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700573 // BP requires an explicit disp, so do not omit it in the 0 case
574 if (disp == 0 && base != rBP) {
575 return;
576 } else if (IS_SIMM8(disp)) {
577 code_buffer_.push_back(disp & 0xFF);
578 } else {
579 code_buffer_.push_back(disp & 0xFF);
580 code_buffer_.push_back((disp >> 8) & 0xFF);
581 code_buffer_.push_back((disp >> 16) & 0xFF);
582 code_buffer_.push_back((disp >> 24) & 0xFF);
583 }
584}
585
Vladimir Marko057c74a2013-12-03 15:20:45 +0000586void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
587 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700588 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000589 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700590 code_buffer_.push_back(modrm);
591 if (base == rX86_SP) {
592 // Special SIB for SP base
593 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
594 }
595 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700596}
597
Vladimir Marko057c74a2013-12-03 15:20:45 +0000598void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
599 int scale, int disp) {
600 DCHECK_LT(reg_or_opcode, 8);
601 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700602 code_buffer_.push_back(modrm);
603 DCHECK_LT(scale, 4);
604 DCHECK_LT(index, 8);
605 DCHECK_LT(base, 8);
606 uint8_t sib = (scale << 6) | (index << 3) | base;
607 code_buffer_.push_back(sib);
608 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700609}
610
Vladimir Marko057c74a2013-12-03 15:20:45 +0000611void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700612 switch (entry->skeleton.immediate_bytes) {
613 case 1:
614 DCHECK(IS_SIMM8(imm));
615 code_buffer_.push_back(imm & 0xFF);
616 break;
617 case 2:
618 DCHECK(IS_SIMM16(imm));
619 code_buffer_.push_back(imm & 0xFF);
620 code_buffer_.push_back((imm >> 8) & 0xFF);
621 break;
622 case 4:
623 code_buffer_.push_back(imm & 0xFF);
624 code_buffer_.push_back((imm >> 8) & 0xFF);
625 code_buffer_.push_back((imm >> 16) & 0xFF);
626 code_buffer_.push_back((imm >> 24) & 0xFF);
627 break;
628 default:
629 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
630 << ") for instruction: " << entry->name;
631 break;
632 }
633}
634
Vladimir Marko057c74a2013-12-03 15:20:45 +0000635void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
636 EmitPrefixAndOpcode(entry);
637 // There's no 3-byte instruction with +rd
638 DCHECK(entry->skeleton.opcode != 0x0F ||
639 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
640 DCHECK(!X86_FPREG(reg));
641 DCHECK_LT(reg, 8);
642 code_buffer_.back() += reg;
643 DCHECK_EQ(0, entry->skeleton.ax_opcode);
644 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
645}
646
647void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
648 EmitPrefixAndOpcode(entry);
649 if (X86_FPREG(reg)) {
650 reg = reg & X86_FP_REG_MASK;
651 }
652 if (reg >= 4) {
653 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
654 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
655 }
656 DCHECK_LT(reg, 8);
657 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
658 code_buffer_.push_back(modrm);
659 DCHECK_EQ(0, entry->skeleton.ax_opcode);
660 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
661}
662
663void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
664 EmitPrefix(entry);
665 code_buffer_.push_back(entry->skeleton.opcode);
666 DCHECK_NE(0x0F, entry->skeleton.opcode);
667 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
668 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000669 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
670 DCHECK_EQ(0, entry->skeleton.ax_opcode);
671 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
672}
673
674void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
675 int scale, int disp) {
676 EmitPrefixAndOpcode(entry);
677 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
678 DCHECK_EQ(0, entry->skeleton.ax_opcode);
679 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
680}
681
682void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
683 uint8_t base, int disp, uint8_t reg) {
684 EmitPrefixAndOpcode(entry);
685 if (X86_FPREG(reg)) {
686 reg = reg & X86_FP_REG_MASK;
687 }
688 if (reg >= 4) {
689 DCHECK(strchr(entry->name, '8') == NULL ||
690 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
691 << entry->name << " " << static_cast<int>(reg)
692 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
693 }
694 EmitModrmDisp(reg, base, disp);
695 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
696 DCHECK_EQ(0, entry->skeleton.ax_opcode);
697 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
698}
699
700void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
701 uint8_t reg, uint8_t base, int disp) {
702 // Opcode will flip operands.
703 EmitMemReg(entry, base, disp, reg);
704}
705
706void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
707 int scale, int disp) {
708 EmitPrefixAndOpcode(entry);
709 if (X86_FPREG(reg)) {
710 reg = reg & X86_FP_REG_MASK;
711 }
712 EmitModrmSibDisp(reg, base, index, scale, disp);
713 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
714 DCHECK_EQ(0, entry->skeleton.ax_opcode);
715 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
716}
717
718void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
719 uint8_t reg) {
720 // Opcode will flip operands.
721 EmitRegArray(entry, reg, base, index, scale, disp);
722}
723
724void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
725 DCHECK_NE(entry->skeleton.prefix1, 0);
726 EmitPrefixAndOpcode(entry);
727 if (X86_FPREG(reg)) {
728 reg = reg & X86_FP_REG_MASK;
729 }
730 if (reg >= 4) {
731 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
732 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
733 }
734 DCHECK_LT(reg, 8);
735 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
736 code_buffer_.push_back(modrm);
737 code_buffer_.push_back(disp & 0xFF);
738 code_buffer_.push_back((disp >> 8) & 0xFF);
739 code_buffer_.push_back((disp >> 16) & 0xFF);
740 code_buffer_.push_back((disp >> 24) & 0xFF);
741 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
742 DCHECK_EQ(0, entry->skeleton.ax_opcode);
743 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
744}
745
746void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
747 EmitPrefixAndOpcode(entry);
748 if (X86_FPREG(reg1)) {
749 reg1 = reg1 & X86_FP_REG_MASK;
750 }
751 if (X86_FPREG(reg2)) {
752 reg2 = reg2 & X86_FP_REG_MASK;
753 }
754 DCHECK_LT(reg1, 8);
755 DCHECK_LT(reg2, 8);
756 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
757 code_buffer_.push_back(modrm);
758 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
759 DCHECK_EQ(0, entry->skeleton.ax_opcode);
760 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
761}
762
763void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
764 uint8_t reg1, uint8_t reg2, int32_t imm) {
765 EmitPrefixAndOpcode(entry);
766 if (X86_FPREG(reg1)) {
767 reg1 = reg1 & X86_FP_REG_MASK;
768 }
769 if (X86_FPREG(reg2)) {
770 reg2 = reg2 & X86_FP_REG_MASK;
771 }
772 DCHECK_LT(reg1, 8);
773 DCHECK_LT(reg2, 8);
774 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
775 code_buffer_.push_back(modrm);
776 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
777 DCHECK_EQ(0, entry->skeleton.ax_opcode);
778 EmitImm(entry, imm);
779}
780
Mark Mendell4708dcd2014-01-22 09:05:18 -0800781void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
782 uint8_t reg1, uint8_t reg2, int32_t imm) {
783 EmitRegRegImm(entry, reg2, reg1, imm);
784}
785
786void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
787 uint8_t reg, uint8_t base, int disp, int32_t imm) {
788 EmitPrefixAndOpcode(entry);
789 DCHECK(!X86_FPREG(reg));
790 DCHECK_LT(reg, 8);
791 EmitModrmDisp(reg, base, disp);
792 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
793 DCHECK_EQ(0, entry->skeleton.ax_opcode);
794 EmitImm(entry, imm);
795}
796
Brian Carlstrom7940e442013-07-12 13:46:57 -0700797void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
798 if (entry->skeleton.prefix1 != 0) {
799 code_buffer_.push_back(entry->skeleton.prefix1);
800 if (entry->skeleton.prefix2 != 0) {
801 code_buffer_.push_back(entry->skeleton.prefix2);
802 }
803 } else {
804 DCHECK_EQ(0, entry->skeleton.prefix2);
805 }
806 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
807 code_buffer_.push_back(entry->skeleton.ax_opcode);
808 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000809 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700810 if (X86_FPREG(reg)) {
811 reg = reg & X86_FP_REG_MASK;
812 }
813 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
814 code_buffer_.push_back(modrm);
815 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000816 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700817}
818
Mark Mendell343adb52013-12-18 06:02:17 -0800819void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
820 EmitPrefixAndOpcode(entry);
821 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
822 DCHECK_EQ(0, entry->skeleton.ax_opcode);
823 EmitImm(entry, imm);
824}
825
Brian Carlstrom7940e442013-07-12 13:46:57 -0700826void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000827 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700828 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
829 code_buffer_.push_back(modrm);
830 code_buffer_.push_back(disp & 0xFF);
831 code_buffer_.push_back((disp >> 8) & 0xFF);
832 code_buffer_.push_back((disp >> 16) & 0xFF);
833 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000834 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700835 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
836}
837
838void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
839 DCHECK_LT(reg, 8);
840 code_buffer_.push_back(0xB8 + reg);
841 code_buffer_.push_back(imm & 0xFF);
842 code_buffer_.push_back((imm >> 8) & 0xFF);
843 code_buffer_.push_back((imm >> 16) & 0xFF);
844 code_buffer_.push_back((imm >> 24) & 0xFF);
845}
846
847void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000848 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700849 if (imm != 1) {
850 code_buffer_.push_back(entry->skeleton.opcode);
851 } else {
852 // Shorter encoding for 1 bit shift
853 code_buffer_.push_back(entry->skeleton.ax_opcode);
854 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000855 DCHECK_NE(0x0F, entry->skeleton.opcode);
856 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
857 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700858 if (reg >= 4) {
859 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
860 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
861 }
862 DCHECK_LT(reg, 8);
863 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
864 code_buffer_.push_back(modrm);
865 if (imm != 1) {
866 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
867 DCHECK(IS_SIMM8(imm));
868 code_buffer_.push_back(imm & 0xFF);
869 }
870}
871
872void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
873 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000874 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700875 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000876 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700877 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
878 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
879 DCHECK_LT(reg, 8);
880 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
881 code_buffer_.push_back(modrm);
882 DCHECK_EQ(0, entry->skeleton.ax_opcode);
883 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
884}
885
Mark Mendellfeb2b4e2014-01-28 12:59:49 -0800886void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base,
887 int displacement, uint8_t cl) {
888 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
889 EmitPrefix(entry);
890 code_buffer_.push_back(entry->skeleton.opcode);
891 DCHECK_NE(0x0F, entry->skeleton.opcode);
892 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
893 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
894 DCHECK_LT(base, 8);
895 EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
896 DCHECK_EQ(0, entry->skeleton.ax_opcode);
897 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
898}
899
Brian Carlstrom7940e442013-07-12 13:46:57 -0700900void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
901 if (entry->skeleton.prefix1 != 0) {
902 code_buffer_.push_back(entry->skeleton.prefix1);
903 if (entry->skeleton.prefix2 != 0) {
904 code_buffer_.push_back(entry->skeleton.prefix2);
905 }
906 } else {
907 DCHECK_EQ(0, entry->skeleton.prefix2);
908 }
909 DCHECK_EQ(0, entry->skeleton.ax_opcode);
910 DCHECK_EQ(0x0F, entry->skeleton.opcode);
911 code_buffer_.push_back(0x0F);
912 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
913 code_buffer_.push_back(0x90 | condition);
914 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
915 DCHECK_LT(reg, 8);
916 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
917 code_buffer_.push_back(modrm);
918 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
919}
920
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800921void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
922 // Generate prefix and opcode without the condition
923 EmitPrefixAndOpcode(entry);
924
925 // Now add the condition. The last byte of opcode is the one that receives it.
926 DCHECK_LE(condition, 0xF);
927 code_buffer_.back() += condition;
928
929 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
930 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
931 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
932
933 // Check that registers requested for encoding are sane.
934 DCHECK_LT(reg1, 8);
935 DCHECK_LT(reg2, 8);
936
937 // For register to register encoding, the mod is 3.
938 const uint8_t mod = (3 << 6);
939
940 // Encode the ModR/M byte now.
941 const uint8_t modrm = mod | (reg1 << 3) | reg2;
942 code_buffer_.push_back(modrm);
943}
944
Brian Carlstrom7940e442013-07-12 13:46:57 -0700945void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
946 if (entry->opcode == kX86Jmp8) {
947 DCHECK(IS_SIMM8(rel));
948 code_buffer_.push_back(0xEB);
949 code_buffer_.push_back(rel & 0xFF);
950 } else if (entry->opcode == kX86Jmp32) {
951 code_buffer_.push_back(0xE9);
952 code_buffer_.push_back(rel & 0xFF);
953 code_buffer_.push_back((rel >> 8) & 0xFF);
954 code_buffer_.push_back((rel >> 16) & 0xFF);
955 code_buffer_.push_back((rel >> 24) & 0xFF);
956 } else {
957 DCHECK(entry->opcode == kX86JmpR);
958 code_buffer_.push_back(entry->skeleton.opcode);
959 uint8_t reg = static_cast<uint8_t>(rel);
960 DCHECK_LT(reg, 8);
961 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
962 code_buffer_.push_back(modrm);
963 }
964}
965
966void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
967 DCHECK_LT(cc, 16);
968 if (entry->opcode == kX86Jcc8) {
969 DCHECK(IS_SIMM8(rel));
970 code_buffer_.push_back(0x70 | cc);
971 code_buffer_.push_back(rel & 0xFF);
972 } else {
973 DCHECK(entry->opcode == kX86Jcc32);
974 code_buffer_.push_back(0x0F);
975 code_buffer_.push_back(0x80 | cc);
976 code_buffer_.push_back(rel & 0xFF);
977 code_buffer_.push_back((rel >> 8) & 0xFF);
978 code_buffer_.push_back((rel >> 16) & 0xFF);
979 code_buffer_.push_back((rel >> 24) & 0xFF);
980 }
981}
982
983void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000984 EmitPrefixAndOpcode(entry);
985 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700986 DCHECK_EQ(0, entry->skeleton.ax_opcode);
987 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
988}
989
Mark Mendell55d0eac2014-02-06 11:02:52 -0800990void X86Mir2Lir::EmitCallImmediate(const X86EncodingMap* entry, int disp) {
991 EmitPrefixAndOpcode(entry);
992 DCHECK_EQ(4, entry->skeleton.immediate_bytes);
993 code_buffer_.push_back(disp & 0xFF);
994 code_buffer_.push_back((disp >> 8) & 0xFF);
995 code_buffer_.push_back((disp >> 16) & 0xFF);
996 code_buffer_.push_back((disp >> 24) & 0xFF);
997 DCHECK_EQ(0, entry->skeleton.ax_opcode);
998}
999
Brian Carlstrom7940e442013-07-12 13:46:57 -07001000void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
1001 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001002 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001003 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
1004 code_buffer_.push_back(modrm);
1005 code_buffer_.push_back(disp & 0xFF);
1006 code_buffer_.push_back((disp >> 8) & 0xFF);
1007 code_buffer_.push_back((disp >> 16) & 0xFF);
1008 code_buffer_.push_back((disp >> 24) & 0xFF);
1009 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1010 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1011}
1012
1013void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1014 int base_or_table, uint8_t index, int scale, int table_or_disp) {
1015 int disp;
1016 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -07001017 Mir2Lir::EmbeddedData *tab_rec =
1018 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001019 disp = tab_rec->offset;
1020 } else {
1021 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -07001022 Mir2Lir::EmbeddedData *tab_rec =
1023 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001024 disp = tab_rec->offset;
1025 }
Vladimir Marko057c74a2013-12-03 15:20:45 +00001026 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001027 if (X86_FPREG(reg)) {
1028 reg = reg & X86_FP_REG_MASK;
1029 }
1030 DCHECK_LT(reg, 8);
1031 if (entry->opcode == kX86PcRelLoadRA) {
1032 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001033 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001034 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1035 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1036 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1037 code_buffer_.push_back(modrm);
1038 DCHECK_LT(scale, 4);
1039 DCHECK_LT(index, 8);
1040 DCHECK_LT(base_or_table, 8);
1041 uint8_t base = static_cast<uint8_t>(base_or_table);
1042 uint8_t sib = (scale << 6) | (index << 3) | base;
1043 code_buffer_.push_back(sib);
1044 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1045 } else {
1046 code_buffer_.push_back(entry->skeleton.opcode + reg);
1047 }
1048 code_buffer_.push_back(disp & 0xFF);
1049 code_buffer_.push_back((disp >> 8) & 0xFF);
1050 code_buffer_.push_back((disp >> 16) & 0xFF);
1051 code_buffer_.push_back((disp >> 24) & 0xFF);
1052 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1053 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1054}
1055
1056void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1057 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1058 code_buffer_.push_back(0xE8); // call +0
1059 code_buffer_.push_back(0);
1060 code_buffer_.push_back(0);
1061 code_buffer_.push_back(0);
1062 code_buffer_.push_back(0);
1063
1064 DCHECK_LT(reg, 8);
1065 code_buffer_.push_back(0x58 + reg); // pop reg
1066
1067 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1068}
1069
1070void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1071 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1072 << BuildInsnString(entry->fmt, lir, 0);
1073 for (int i = 0; i < GetInsnSize(lir); ++i) {
1074 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1075 }
1076}
1077
1078/*
1079 * Assemble the LIR into binary instruction format. Note that we may
1080 * discover that pc-relative displacements may not fit the selected
1081 * instruction. In those cases we will try to substitute a new code
1082 * sequence or request that the trace be shortened and retried.
1083 */
buzbee0d829482013-10-11 15:24:55 -07001084AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001085 LIR *lir;
1086 AssemblerStatus res = kSuccess; // Assume success
1087
1088 const bool kVerbosePcFixup = false;
1089 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001090 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001091 continue;
1092 }
1093
1094 if (lir->flags.is_nop) {
1095 continue;
1096 }
1097
buzbeeb48819d2013-09-14 16:15:25 -07001098 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001099 switch (lir->opcode) {
1100 case kX86Jcc8: {
1101 LIR *target_lir = lir->target;
1102 DCHECK(target_lir != NULL);
1103 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001104 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001105 if (IS_SIMM8(lir->operands[0])) {
1106 pc = lir->offset + 2 /* opcode + rel8 */;
1107 } else {
1108 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1109 }
buzbee0d829482013-10-11 15:24:55 -07001110 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001111 delta = target - pc;
1112 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1113 if (kVerbosePcFixup) {
1114 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1115 << " delta: " << delta << " old delta: " << lir->operands[0];
1116 }
1117 lir->opcode = kX86Jcc32;
1118 SetupResourceMasks(lir);
1119 res = kRetryAll;
1120 }
1121 if (kVerbosePcFixup) {
1122 LOG(INFO) << "Source:";
1123 DumpLIRInsn(lir, 0);
1124 LOG(INFO) << "Target:";
1125 DumpLIRInsn(target_lir, 0);
1126 LOG(INFO) << "Delta " << delta;
1127 }
1128 lir->operands[0] = delta;
1129 break;
1130 }
1131 case kX86Jcc32: {
1132 LIR *target_lir = lir->target;
1133 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001134 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1135 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001136 int delta = target - pc;
1137 if (kVerbosePcFixup) {
1138 LOG(INFO) << "Source:";
1139 DumpLIRInsn(lir, 0);
1140 LOG(INFO) << "Target:";
1141 DumpLIRInsn(target_lir, 0);
1142 LOG(INFO) << "Delta " << delta;
1143 }
1144 lir->operands[0] = delta;
1145 break;
1146 }
1147 case kX86Jmp8: {
1148 LIR *target_lir = lir->target;
1149 DCHECK(target_lir != NULL);
1150 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001151 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001152 if (IS_SIMM8(lir->operands[0])) {
1153 pc = lir->offset + 2 /* opcode + rel8 */;
1154 } else {
1155 pc = lir->offset + 5 /* opcode + rel32 */;
1156 }
buzbee0d829482013-10-11 15:24:55 -07001157 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001158 delta = target - pc;
1159 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1160 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001161 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001162 if (kVerbosePcFixup) {
1163 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1164 }
1165 res = kRetryAll;
1166 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1167 if (kVerbosePcFixup) {
1168 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1169 }
1170 lir->opcode = kX86Jmp32;
1171 SetupResourceMasks(lir);
1172 res = kRetryAll;
1173 }
1174 lir->operands[0] = delta;
1175 break;
1176 }
1177 case kX86Jmp32: {
1178 LIR *target_lir = lir->target;
1179 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001180 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1181 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001182 int delta = target - pc;
1183 lir->operands[0] = delta;
1184 break;
1185 }
1186 default:
Mark Mendell67c39c42014-01-31 17:28:00 -08001187 if (lir->flags.fixup == kFixupLoad) {
1188 LIR *target_lir = lir->target;
1189 DCHECK(target_lir != NULL);
1190 CodeOffset target = target_lir->offset;
1191 lir->operands[2] = target;
1192 int newSize = GetInsnSize(lir);
1193 if (newSize != lir->flags.size) {
1194 lir->flags.size = newSize;
1195 res = kRetryAll;
1196 }
1197 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001198 break;
1199 }
1200 }
1201
1202 /*
1203 * If one of the pc-relative instructions expanded we'll have
1204 * to make another pass. Don't bother to fully assemble the
1205 * instruction.
1206 */
1207 if (res != kSuccess) {
1208 continue;
1209 }
1210 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1211 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1212 size_t starting_cbuf_size = code_buffer_.size();
1213 switch (entry->kind) {
1214 case kData: // 4 bytes of data
1215 code_buffer_.push_back(lir->operands[0]);
1216 break;
1217 case kNullary: // 1 byte of opcode
1218 DCHECK_EQ(0, entry->skeleton.prefix1);
1219 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001220 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001221 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1222 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1223 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1224 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001225 case kRegOpcode: // lir operands - 0: reg
1226 EmitOpRegOpcode(entry, lir->operands[0]);
1227 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001228 case kReg: // lir operands - 0: reg
1229 EmitOpReg(entry, lir->operands[0]);
1230 break;
1231 case kMem: // lir operands - 0: base, 1: disp
1232 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1233 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001234 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1235 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1236 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001237 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1238 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1239 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001240 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1241 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1242 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001243 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1244 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1245 lir->operands[3], lir->operands[4]);
1246 break;
1247 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1248 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1249 break;
1250 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1251 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1252 lir->operands[3], lir->operands[4]);
1253 break;
1254 case kRegThread: // lir operands - 0: reg, 1: disp
1255 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1256 break;
1257 case kRegReg: // lir operands - 0: reg1, 1: reg2
1258 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1259 break;
1260 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1261 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1262 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001263 case kRegRegImmRev:
1264 EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1265 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001266 case kRegRegImm:
1267 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1268 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001269 case kRegMemImm:
1270 EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1271 lir->operands[3]);
1272 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001273 case kRegImm: // lir operands - 0: reg, 1: immediate
1274 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1275 break;
1276 case kThreadImm: // lir operands - 0: disp, 1: immediate
1277 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1278 break;
1279 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1280 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1281 break;
1282 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1283 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1284 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001285 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001286 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1287 break;
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001288 case kShiftMemCl: // lir operands - 0: base, 1:displacement, 2: cl
1289 EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1290 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001291 case kRegCond: // lir operands - 0: reg, 1: condition
1292 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1293 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001294 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1295 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1296 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001297 case kJmp: // lir operands - 0: rel
1298 EmitJmp(entry, lir->operands[0]);
1299 break;
1300 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1301 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1302 break;
1303 case kCall:
1304 switch (entry->opcode) {
Mark Mendell55d0eac2014-02-06 11:02:52 -08001305 case kX86CallI: // lir operands - 0: disp
1306 EmitCallImmediate(entry, lir->operands[0]);
1307 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001308 case kX86CallM: // lir operands - 0: base, 1: disp
1309 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1310 break;
1311 case kX86CallT: // lir operands - 0: disp
1312 EmitCallThread(entry, lir->operands[0]);
1313 break;
1314 default:
1315 EmitUnimplemented(entry, lir);
1316 break;
1317 }
1318 break;
1319 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1320 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1321 lir->operands[3], lir->operands[4]);
1322 break;
1323 case kMacro:
1324 EmitMacro(entry, lir->operands[0], lir->offset);
1325 break;
1326 default:
1327 EmitUnimplemented(entry, lir);
1328 break;
1329 }
1330 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1331 code_buffer_.size() - starting_cbuf_size)
1332 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1333 }
1334 return res;
1335}
1336
buzbeeb48819d2013-09-14 16:15:25 -07001337// LIR offset assignment.
1338// TODO: consolidate w/ Arm assembly mechanism.
1339int X86Mir2Lir::AssignInsnOffsets() {
1340 LIR* lir;
1341 int offset = 0;
1342
1343 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1344 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001345 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001346 if (!lir->flags.is_nop) {
1347 offset += lir->flags.size;
1348 }
1349 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1350 if (offset & 0x2) {
1351 offset += 2;
1352 lir->operands[0] = 1;
1353 } else {
1354 lir->operands[0] = 0;
1355 }
1356 }
1357 /* Pseudo opcodes don't consume space */
1358 }
1359 return offset;
1360}
1361
1362/*
1363 * Walk the compilation unit and assign offsets to instructions
1364 * and literals and compute the total size of the compiled unit.
1365 * TODO: consolidate w/ Arm assembly mechanism.
1366 */
1367void X86Mir2Lir::AssignOffsets() {
1368 int offset = AssignInsnOffsets();
1369
1370 /* Const values have to be word aligned */
1371 offset = (offset + 3) & ~3;
1372
1373 /* Set up offsets for literals */
1374 data_offset_ = offset;
1375
1376 offset = AssignLiteralOffset(offset);
1377
1378 offset = AssignSwitchTablesOffset(offset);
1379
1380 offset = AssignFillArrayDataOffset(offset);
1381
1382 total_size_ = offset;
1383}
1384
1385/*
1386 * Go over each instruction in the list and calculate the offset from the top
1387 * before sending them off to the assembler. If out-of-range branch distance is
1388 * seen rearrange the instructions a bit to correct it.
1389 * TODO: consolidate w/ Arm assembly mechanism.
1390 */
1391void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001392 cu_->NewTimingSplit("Assemble");
Mark Mendell55d0eac2014-02-06 11:02:52 -08001393
1394 // We will remove the method address if we never ended up using it
1395 if (store_method_addr_ && !store_method_addr_used_) {
1396 setup_method_address_[0]->flags.is_nop = true;
1397 setup_method_address_[1]->flags.is_nop = true;
1398 }
1399
buzbeeb48819d2013-09-14 16:15:25 -07001400 AssignOffsets();
1401 int assembler_retries = 0;
1402 /*
1403 * Assemble here. Note that we generate code with optimistic assumptions
1404 * and if found now to work, we'll have to redo the sequence and retry.
1405 */
1406
1407 while (true) {
1408 AssemblerStatus res = AssembleInstructions(0);
1409 if (res == kSuccess) {
1410 break;
1411 } else {
1412 assembler_retries++;
1413 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1414 CodegenDump();
1415 LOG(FATAL) << "Assembler error - too many retries";
1416 }
1417 // Redo offsets and try again
1418 AssignOffsets();
1419 code_buffer_.clear();
1420 }
1421 }
1422
1423 // Install literals
1424 InstallLiteralPools();
1425
1426 // Install switch tables
1427 InstallSwitchTables();
1428
1429 // Install fill array data
1430 InstallFillArrayData();
1431
1432 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001433 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001434 CreateMappingTables();
1435
buzbeea61f4952013-08-23 14:27:06 -07001436 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001437 CreateNativeGcMap();
1438}
1439
Brian Carlstrom7940e442013-07-12 13:46:57 -07001440} // namespace art