blob: ae53ddbc9e3aac495e894ce71e718200a170f776 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
Mark Mendell4708dcd2014-01-22 09:05:18 -0800214 { kX86Shld32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xA4, 0, 0, 0, 1}, "Shld32", "!0r,!1r,!2d" },
215 { kX86Shrd32RRI, kRegRegImmRev, IS_TERTIARY_OP | REG_DEF0_USE01 | SETS_CCODES, { 0, 0, 0x0F, 0xAC, 0, 0, 0, 1}, "Shrd32", "!0r,!1r,!2d" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700216
217 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
218 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
219 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
220 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
221 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
222 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
223 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
224 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
225 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
226 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
227
228#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
229 reg, reg_kind, reg_flags, \
230 mem, mem_kind, mem_flags, \
231 arr, arr_kind, arr_flags, imm, \
232 b_flags, hw_flags, w_flags, \
233 b_format, hw_format, w_format) \
234{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
235{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
236{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
237{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
238{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
239{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
240{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
241{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
242{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
243
244 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
245 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
246
Mark Mendell2bf31e62014-01-23 12:13:40 -0800247 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
248 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
249 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
250 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kReg, IS_UNARY_OP | REG_USE0, DaM, kMem, IS_BINARY_OP | REG_USE0, DaA, kArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700251#undef UNARY_ENCODING_MAP
252
Mark Mendell2bf31e62014-01-23 12:13:40 -0800253 { kx86Cdq32Da, kRegOpcode, NO_OPERAND | REG_DEFAD_USEA, { 0, 0, 0x99, 0, 0, 0, 0, 0 }, "Cdq", "" },
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000254 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
255 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
256 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100257
Brian Carlstrom7940e442013-07-12 13:46:57 -0700258#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
259{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
260{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
261{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
262
263 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
264 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
265 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
266
267 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
268 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
269 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
270
271 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
275 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
276 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
277 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
279 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
280 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
281 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
290 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
291 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
292 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
Razvan A Lupusorud3266bc2014-01-24 12:55:31 -0800293 EXT_0F_ENCODING_MAP(Punpckldq, 0x66, 0x62, REG_DEF0),
Brian Carlstrom7940e442013-07-12 13:46:57 -0700294
295 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
296 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800297 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000298 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700299
Razvan A Lupusoru2c498d12014-01-29 16:02:57 -0800300 EXT_0F_ENCODING_MAP(Movups, 0x0, 0x10, REG_DEF0),
301 { kX86MovupsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsMR", "[!0r+!1d],!2r" },
302 { kX86MovupsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovupsAR", "[!0r+!1r<<!2d+!3d],!4r" },
303
304 EXT_0F_ENCODING_MAP(Movaps, 0x0, 0x28, REG_DEF0),
305 { kX86MovapsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsMR", "[!0r+!1d],!2r" },
306 { kX86MovapsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x29, 0, 0, 0, 0 }, "MovapsAR", "[!0r+!1r<<!2d+!3d],!4r" },
307
308 { kX86MovlpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRM", "!0r,[!1r+!2d]" },
309 { kX86MovlpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x12, 0, 0, 0, 0 }, "MovlpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
310 { kX86MovlpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsMR", "[!0r+!1d],!2r" },
311 { kX86MovlpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x13, 0, 0, 0, 0 }, "MovlpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
312
313 { kX86MovhpsRM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0 | REG_USE01, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRM", "!0r,[!1r+!2d]" },
314 { kX86MovhpsRA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0 | REG_USE012, { 0x0, 0, 0x0F, 0x16, 0, 0, 0, 0 }, "MovhpsRA", "!0r,[!1r+!2r<<!3d+!4d]" },
315 { kX86MovhpsMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsMR", "[!0r+!1d],!2r" },
316 { kX86MovhpsAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x0, 0, 0x0F, 0x17, 0, 0, 0, 0 }, "MovhpsAR", "[!0r+!1r<<!2d+!3d],!4r" },
317
Brian Carlstrom7940e442013-07-12 13:46:57 -0700318 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
319 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
320 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
321 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
322
323 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
324 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
325 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
326
327 // TODO: load/store?
328 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
329 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
330
331 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
332 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
333
334 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
335 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
336 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700337 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
338 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000339 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
340 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700341
342 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
343 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
344 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
345 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
346#undef EXT_0F_ENCODING_MAP
347
348 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
349 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
350 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
351 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
352 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
353 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
354 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
355 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
356 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700357 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700358
359 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
360 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
361 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
362};
363
364static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
365 size_t size = 0;
366 if (entry->skeleton.prefix1 > 0) {
367 ++size;
368 if (entry->skeleton.prefix2 > 0) {
369 ++size;
370 }
371 }
372 ++size; // opcode
373 if (entry->skeleton.opcode == 0x0F) {
374 ++size;
375 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
376 ++size;
377 }
378 }
379 ++size; // modrm
380 if (has_sib || base == rX86_SP) {
381 // SP requires a SIB byte.
382 ++size;
383 }
384 if (displacement != 0 || base == rBP) {
385 // BP requires an explicit displacement, even when it's 0.
386 if (entry->opcode != kX86Lea32RA) {
387 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
388 }
389 size += IS_SIMM8(displacement) ? 1 : 4;
390 }
391 size += entry->skeleton.immediate_bytes;
392 return size;
393}
394
395int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700396 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700397 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
398 switch (entry->kind) {
399 case kData:
400 return 4; // 4 bytes of data
401 case kNop:
402 return lir->operands[0]; // length of nop is sole operand
403 case kNullary:
404 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100405 case kRegOpcode: // lir operands - 0: reg
406 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700407 case kReg: // lir operands - 0: reg
408 return ComputeSize(entry, 0, 0, false);
409 case kMem: // lir operands - 0: base, 1: disp
410 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
411 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
412 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
413 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
414 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
415 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
416 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
417 case kThreadReg: // lir operands - 0: disp, 1: reg
418 return ComputeSize(entry, 0, lir->operands[0], false);
419 case kRegReg:
420 return ComputeSize(entry, 0, 0, false);
421 case kRegRegStore:
422 return ComputeSize(entry, 0, 0, false);
423 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
424 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
425 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
426 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
427 case kRegThread: // lir operands - 0: reg, 1: disp
428 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
429 case kRegImm: { // lir operands - 0: reg, 1: immediate
430 size_t size = ComputeSize(entry, 0, 0, false);
431 if (entry->skeleton.ax_opcode == 0) {
432 return size;
433 } else {
434 // AX opcodes don't require the modrm byte.
435 int reg = lir->operands[0];
436 return size - (reg == rAX ? 1 : 0);
437 }
438 }
439 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
440 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
441 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
442 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
443 case kThreadImm: // lir operands - 0: disp, 1: imm
444 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
445 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
Mark Mendell4708dcd2014-01-22 09:05:18 -0800446 case kRegRegImmRev:
Brian Carlstrom7940e442013-07-12 13:46:57 -0700447 return ComputeSize(entry, 0, 0, false);
448 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
449 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
450 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
451 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
452 case kMovRegImm: // lir operands - 0: reg, 1: immediate
453 return 1 + entry->skeleton.immediate_bytes;
454 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
455 // Shift by immediate one has a shorter opcode.
456 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
457 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
458 // Shift by immediate one has a shorter opcode.
459 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
460 (lir->operands[2] == 1 ? 1 : 0);
461 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
462 // Shift by immediate one has a shorter opcode.
463 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
464 (lir->operands[4] == 1 ? 1 : 0);
465 case kShiftRegCl:
466 return ComputeSize(entry, 0, 0, false);
467 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
468 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
469 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
470 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
471 case kRegCond: // lir operands - 0: reg, 1: cond
472 return ComputeSize(entry, 0, 0, false);
473 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
474 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
475 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
476 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800477 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
478 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700479 case kJcc:
480 if (lir->opcode == kX86Jcc8) {
481 return 2; // opcode + rel8
482 } else {
483 DCHECK(lir->opcode == kX86Jcc32);
484 return 6; // 2 byte opcode + rel32
485 }
486 case kJmp:
487 if (lir->opcode == kX86Jmp8) {
488 return 2; // opcode + rel8
489 } else if (lir->opcode == kX86Jmp32) {
490 return 5; // opcode + rel32
491 } else {
492 DCHECK(lir->opcode == kX86JmpR);
493 return 2; // opcode + modrm
494 }
495 case kCall:
496 switch (lir->opcode) {
497 case kX86CallR: return 2; // opcode modrm
498 case kX86CallM: // lir operands - 0: base, 1: disp
499 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
500 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
501 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
502 case kX86CallT: // lir operands - 0: disp
503 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
504 default:
505 break;
506 }
507 break;
508 case kPcRel:
509 if (entry->opcode == kX86PcRelLoadRA) {
510 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
511 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
512 } else {
513 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700514 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700515 }
516 case kMacro:
517 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
518 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
519 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
520 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
521 default:
522 break;
523 }
524 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
525 return 0;
526}
527
Vladimir Marko057c74a2013-12-03 15:20:45 +0000528void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
529 if (entry->skeleton.prefix1 != 0) {
530 code_buffer_.push_back(entry->skeleton.prefix1);
531 if (entry->skeleton.prefix2 != 0) {
532 code_buffer_.push_back(entry->skeleton.prefix2);
533 }
534 } else {
535 DCHECK_EQ(0, entry->skeleton.prefix2);
536 }
537}
538
539void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
540 code_buffer_.push_back(entry->skeleton.opcode);
541 if (entry->skeleton.opcode == 0x0F) {
542 code_buffer_.push_back(entry->skeleton.extra_opcode1);
543 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
544 code_buffer_.push_back(entry->skeleton.extra_opcode2);
545 } else {
546 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
547 }
548 } else {
549 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
550 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
551 }
552}
553
554void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
555 EmitPrefix(entry);
556 EmitOpcode(entry);
557}
558
Brian Carlstrom7940e442013-07-12 13:46:57 -0700559static uint8_t ModrmForDisp(int base, int disp) {
560 // BP requires an explicit disp, so do not omit it in the 0 case
561 if (disp == 0 && base != rBP) {
562 return 0;
563 } else if (IS_SIMM8(disp)) {
564 return 1;
565 } else {
566 return 2;
567 }
568}
569
Vladimir Marko057c74a2013-12-03 15:20:45 +0000570void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700571 // BP requires an explicit disp, so do not omit it in the 0 case
572 if (disp == 0 && base != rBP) {
573 return;
574 } else if (IS_SIMM8(disp)) {
575 code_buffer_.push_back(disp & 0xFF);
576 } else {
577 code_buffer_.push_back(disp & 0xFF);
578 code_buffer_.push_back((disp >> 8) & 0xFF);
579 code_buffer_.push_back((disp >> 16) & 0xFF);
580 code_buffer_.push_back((disp >> 24) & 0xFF);
581 }
582}
583
Vladimir Marko057c74a2013-12-03 15:20:45 +0000584void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
585 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700586 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000587 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700588 code_buffer_.push_back(modrm);
589 if (base == rX86_SP) {
590 // Special SIB for SP base
591 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
592 }
593 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700594}
595
Vladimir Marko057c74a2013-12-03 15:20:45 +0000596void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
597 int scale, int disp) {
598 DCHECK_LT(reg_or_opcode, 8);
599 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700600 code_buffer_.push_back(modrm);
601 DCHECK_LT(scale, 4);
602 DCHECK_LT(index, 8);
603 DCHECK_LT(base, 8);
604 uint8_t sib = (scale << 6) | (index << 3) | base;
605 code_buffer_.push_back(sib);
606 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700607}
608
Vladimir Marko057c74a2013-12-03 15:20:45 +0000609void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700610 switch (entry->skeleton.immediate_bytes) {
611 case 1:
612 DCHECK(IS_SIMM8(imm));
613 code_buffer_.push_back(imm & 0xFF);
614 break;
615 case 2:
616 DCHECK(IS_SIMM16(imm));
617 code_buffer_.push_back(imm & 0xFF);
618 code_buffer_.push_back((imm >> 8) & 0xFF);
619 break;
620 case 4:
621 code_buffer_.push_back(imm & 0xFF);
622 code_buffer_.push_back((imm >> 8) & 0xFF);
623 code_buffer_.push_back((imm >> 16) & 0xFF);
624 code_buffer_.push_back((imm >> 24) & 0xFF);
625 break;
626 default:
627 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
628 << ") for instruction: " << entry->name;
629 break;
630 }
631}
632
Vladimir Marko057c74a2013-12-03 15:20:45 +0000633void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
634 EmitPrefixAndOpcode(entry);
635 // There's no 3-byte instruction with +rd
636 DCHECK(entry->skeleton.opcode != 0x0F ||
637 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
638 DCHECK(!X86_FPREG(reg));
639 DCHECK_LT(reg, 8);
640 code_buffer_.back() += reg;
641 DCHECK_EQ(0, entry->skeleton.ax_opcode);
642 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
643}
644
645void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
646 EmitPrefixAndOpcode(entry);
647 if (X86_FPREG(reg)) {
648 reg = reg & X86_FP_REG_MASK;
649 }
650 if (reg >= 4) {
651 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
652 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
653 }
654 DCHECK_LT(reg, 8);
655 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
656 code_buffer_.push_back(modrm);
657 DCHECK_EQ(0, entry->skeleton.ax_opcode);
658 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
659}
660
661void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
662 EmitPrefix(entry);
663 code_buffer_.push_back(entry->skeleton.opcode);
664 DCHECK_NE(0x0F, entry->skeleton.opcode);
665 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
666 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000667 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
668 DCHECK_EQ(0, entry->skeleton.ax_opcode);
669 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
670}
671
672void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
673 int scale, int disp) {
674 EmitPrefixAndOpcode(entry);
675 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
676 DCHECK_EQ(0, entry->skeleton.ax_opcode);
677 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
678}
679
680void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
681 uint8_t base, int disp, uint8_t reg) {
682 EmitPrefixAndOpcode(entry);
683 if (X86_FPREG(reg)) {
684 reg = reg & X86_FP_REG_MASK;
685 }
686 if (reg >= 4) {
687 DCHECK(strchr(entry->name, '8') == NULL ||
688 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
689 << entry->name << " " << static_cast<int>(reg)
690 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
691 }
692 EmitModrmDisp(reg, base, disp);
693 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
694 DCHECK_EQ(0, entry->skeleton.ax_opcode);
695 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
696}
697
698void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
699 uint8_t reg, uint8_t base, int disp) {
700 // Opcode will flip operands.
701 EmitMemReg(entry, base, disp, reg);
702}
703
704void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
705 int scale, int disp) {
706 EmitPrefixAndOpcode(entry);
707 if (X86_FPREG(reg)) {
708 reg = reg & X86_FP_REG_MASK;
709 }
710 EmitModrmSibDisp(reg, base, index, scale, disp);
711 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
712 DCHECK_EQ(0, entry->skeleton.ax_opcode);
713 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
714}
715
716void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
717 uint8_t reg) {
718 // Opcode will flip operands.
719 EmitRegArray(entry, reg, base, index, scale, disp);
720}
721
722void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
723 DCHECK_NE(entry->skeleton.prefix1, 0);
724 EmitPrefixAndOpcode(entry);
725 if (X86_FPREG(reg)) {
726 reg = reg & X86_FP_REG_MASK;
727 }
728 if (reg >= 4) {
729 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
730 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
731 }
732 DCHECK_LT(reg, 8);
733 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
734 code_buffer_.push_back(modrm);
735 code_buffer_.push_back(disp & 0xFF);
736 code_buffer_.push_back((disp >> 8) & 0xFF);
737 code_buffer_.push_back((disp >> 16) & 0xFF);
738 code_buffer_.push_back((disp >> 24) & 0xFF);
739 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
740 DCHECK_EQ(0, entry->skeleton.ax_opcode);
741 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
742}
743
744void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
745 EmitPrefixAndOpcode(entry);
746 if (X86_FPREG(reg1)) {
747 reg1 = reg1 & X86_FP_REG_MASK;
748 }
749 if (X86_FPREG(reg2)) {
750 reg2 = reg2 & X86_FP_REG_MASK;
751 }
752 DCHECK_LT(reg1, 8);
753 DCHECK_LT(reg2, 8);
754 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
755 code_buffer_.push_back(modrm);
756 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
757 DCHECK_EQ(0, entry->skeleton.ax_opcode);
758 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
759}
760
761void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
762 uint8_t reg1, uint8_t reg2, int32_t imm) {
763 EmitPrefixAndOpcode(entry);
764 if (X86_FPREG(reg1)) {
765 reg1 = reg1 & X86_FP_REG_MASK;
766 }
767 if (X86_FPREG(reg2)) {
768 reg2 = reg2 & X86_FP_REG_MASK;
769 }
770 DCHECK_LT(reg1, 8);
771 DCHECK_LT(reg2, 8);
772 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
773 code_buffer_.push_back(modrm);
774 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
775 DCHECK_EQ(0, entry->skeleton.ax_opcode);
776 EmitImm(entry, imm);
777}
778
Mark Mendell4708dcd2014-01-22 09:05:18 -0800779void X86Mir2Lir::EmitRegRegImmRev(const X86EncodingMap* entry,
780 uint8_t reg1, uint8_t reg2, int32_t imm) {
781 EmitRegRegImm(entry, reg2, reg1, imm);
782}
783
784void X86Mir2Lir::EmitRegMemImm(const X86EncodingMap* entry,
785 uint8_t reg, uint8_t base, int disp, int32_t imm) {
786 EmitPrefixAndOpcode(entry);
787 DCHECK(!X86_FPREG(reg));
788 DCHECK_LT(reg, 8);
789 EmitModrmDisp(reg, base, disp);
790 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
791 DCHECK_EQ(0, entry->skeleton.ax_opcode);
792 EmitImm(entry, imm);
793}
794
Brian Carlstrom7940e442013-07-12 13:46:57 -0700795void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
796 if (entry->skeleton.prefix1 != 0) {
797 code_buffer_.push_back(entry->skeleton.prefix1);
798 if (entry->skeleton.prefix2 != 0) {
799 code_buffer_.push_back(entry->skeleton.prefix2);
800 }
801 } else {
802 DCHECK_EQ(0, entry->skeleton.prefix2);
803 }
804 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
805 code_buffer_.push_back(entry->skeleton.ax_opcode);
806 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000807 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700808 if (X86_FPREG(reg)) {
809 reg = reg & X86_FP_REG_MASK;
810 }
811 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
812 code_buffer_.push_back(modrm);
813 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000814 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700815}
816
Mark Mendell343adb52013-12-18 06:02:17 -0800817void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
818 EmitPrefixAndOpcode(entry);
819 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
820 DCHECK_EQ(0, entry->skeleton.ax_opcode);
821 EmitImm(entry, imm);
822}
823
Brian Carlstrom7940e442013-07-12 13:46:57 -0700824void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000825 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700826 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
827 code_buffer_.push_back(modrm);
828 code_buffer_.push_back(disp & 0xFF);
829 code_buffer_.push_back((disp >> 8) & 0xFF);
830 code_buffer_.push_back((disp >> 16) & 0xFF);
831 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000832 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700833 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
834}
835
836void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
837 DCHECK_LT(reg, 8);
838 code_buffer_.push_back(0xB8 + reg);
839 code_buffer_.push_back(imm & 0xFF);
840 code_buffer_.push_back((imm >> 8) & 0xFF);
841 code_buffer_.push_back((imm >> 16) & 0xFF);
842 code_buffer_.push_back((imm >> 24) & 0xFF);
843}
844
845void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000846 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700847 if (imm != 1) {
848 code_buffer_.push_back(entry->skeleton.opcode);
849 } else {
850 // Shorter encoding for 1 bit shift
851 code_buffer_.push_back(entry->skeleton.ax_opcode);
852 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000853 DCHECK_NE(0x0F, entry->skeleton.opcode);
854 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
855 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700856 if (reg >= 4) {
857 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
858 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
859 }
860 DCHECK_LT(reg, 8);
861 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
862 code_buffer_.push_back(modrm);
863 if (imm != 1) {
864 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
865 DCHECK(IS_SIMM8(imm));
866 code_buffer_.push_back(imm & 0xFF);
867 }
868}
869
870void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
871 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000872 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700873 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000874 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700875 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
876 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
877 DCHECK_LT(reg, 8);
878 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
879 code_buffer_.push_back(modrm);
880 DCHECK_EQ(0, entry->skeleton.ax_opcode);
881 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
882}
883
Mark Mendellfeb2b4e2014-01-28 12:59:49 -0800884void X86Mir2Lir::EmitShiftMemCl(const X86EncodingMap* entry, uint8_t base,
885 int displacement, uint8_t cl) {
886 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
887 EmitPrefix(entry);
888 code_buffer_.push_back(entry->skeleton.opcode);
889 DCHECK_NE(0x0F, entry->skeleton.opcode);
890 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
891 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
892 DCHECK_LT(base, 8);
893 EmitModrmDisp(entry->skeleton.modrm_opcode, base, displacement);
894 DCHECK_EQ(0, entry->skeleton.ax_opcode);
895 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
896}
897
Brian Carlstrom7940e442013-07-12 13:46:57 -0700898void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
899 if (entry->skeleton.prefix1 != 0) {
900 code_buffer_.push_back(entry->skeleton.prefix1);
901 if (entry->skeleton.prefix2 != 0) {
902 code_buffer_.push_back(entry->skeleton.prefix2);
903 }
904 } else {
905 DCHECK_EQ(0, entry->skeleton.prefix2);
906 }
907 DCHECK_EQ(0, entry->skeleton.ax_opcode);
908 DCHECK_EQ(0x0F, entry->skeleton.opcode);
909 code_buffer_.push_back(0x0F);
910 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
911 code_buffer_.push_back(0x90 | condition);
912 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
913 DCHECK_LT(reg, 8);
914 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
915 code_buffer_.push_back(modrm);
916 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
917}
918
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800919void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
920 // Generate prefix and opcode without the condition
921 EmitPrefixAndOpcode(entry);
922
923 // Now add the condition. The last byte of opcode is the one that receives it.
924 DCHECK_LE(condition, 0xF);
925 code_buffer_.back() += condition;
926
927 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
928 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
929 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
930
931 // Check that registers requested for encoding are sane.
932 DCHECK_LT(reg1, 8);
933 DCHECK_LT(reg2, 8);
934
935 // For register to register encoding, the mod is 3.
936 const uint8_t mod = (3 << 6);
937
938 // Encode the ModR/M byte now.
939 const uint8_t modrm = mod | (reg1 << 3) | reg2;
940 code_buffer_.push_back(modrm);
941}
942
Brian Carlstrom7940e442013-07-12 13:46:57 -0700943void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
944 if (entry->opcode == kX86Jmp8) {
945 DCHECK(IS_SIMM8(rel));
946 code_buffer_.push_back(0xEB);
947 code_buffer_.push_back(rel & 0xFF);
948 } else if (entry->opcode == kX86Jmp32) {
949 code_buffer_.push_back(0xE9);
950 code_buffer_.push_back(rel & 0xFF);
951 code_buffer_.push_back((rel >> 8) & 0xFF);
952 code_buffer_.push_back((rel >> 16) & 0xFF);
953 code_buffer_.push_back((rel >> 24) & 0xFF);
954 } else {
955 DCHECK(entry->opcode == kX86JmpR);
956 code_buffer_.push_back(entry->skeleton.opcode);
957 uint8_t reg = static_cast<uint8_t>(rel);
958 DCHECK_LT(reg, 8);
959 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
960 code_buffer_.push_back(modrm);
961 }
962}
963
964void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
965 DCHECK_LT(cc, 16);
966 if (entry->opcode == kX86Jcc8) {
967 DCHECK(IS_SIMM8(rel));
968 code_buffer_.push_back(0x70 | cc);
969 code_buffer_.push_back(rel & 0xFF);
970 } else {
971 DCHECK(entry->opcode == kX86Jcc32);
972 code_buffer_.push_back(0x0F);
973 code_buffer_.push_back(0x80 | cc);
974 code_buffer_.push_back(rel & 0xFF);
975 code_buffer_.push_back((rel >> 8) & 0xFF);
976 code_buffer_.push_back((rel >> 16) & 0xFF);
977 code_buffer_.push_back((rel >> 24) & 0xFF);
978 }
979}
980
981void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000982 EmitPrefixAndOpcode(entry);
983 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700984 DCHECK_EQ(0, entry->skeleton.ax_opcode);
985 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
986}
987
988void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
989 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000990 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700991 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
992 code_buffer_.push_back(modrm);
993 code_buffer_.push_back(disp & 0xFF);
994 code_buffer_.push_back((disp >> 8) & 0xFF);
995 code_buffer_.push_back((disp >> 16) & 0xFF);
996 code_buffer_.push_back((disp >> 24) & 0xFF);
997 DCHECK_EQ(0, entry->skeleton.ax_opcode);
998 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
999}
1000
1001void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
1002 int base_or_table, uint8_t index, int scale, int table_or_disp) {
1003 int disp;
1004 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -07001005 Mir2Lir::EmbeddedData *tab_rec =
1006 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001007 disp = tab_rec->offset;
1008 } else {
1009 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -07001010 Mir2Lir::EmbeddedData *tab_rec =
1011 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -07001012 disp = tab_rec->offset;
1013 }
Vladimir Marko057c74a2013-12-03 15:20:45 +00001014 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001015 if (X86_FPREG(reg)) {
1016 reg = reg & X86_FP_REG_MASK;
1017 }
1018 DCHECK_LT(reg, 8);
1019 if (entry->opcode == kX86PcRelLoadRA) {
1020 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001021 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001022 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
1023 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
1024 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
1025 code_buffer_.push_back(modrm);
1026 DCHECK_LT(scale, 4);
1027 DCHECK_LT(index, 8);
1028 DCHECK_LT(base_or_table, 8);
1029 uint8_t base = static_cast<uint8_t>(base_or_table);
1030 uint8_t sib = (scale << 6) | (index << 3) | base;
1031 code_buffer_.push_back(sib);
1032 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1033 } else {
1034 code_buffer_.push_back(entry->skeleton.opcode + reg);
1035 }
1036 code_buffer_.push_back(disp & 0xFF);
1037 code_buffer_.push_back((disp >> 8) & 0xFF);
1038 code_buffer_.push_back((disp >> 16) & 0xFF);
1039 code_buffer_.push_back((disp >> 24) & 0xFF);
1040 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1041 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1042}
1043
1044void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
1045 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
1046 code_buffer_.push_back(0xE8); // call +0
1047 code_buffer_.push_back(0);
1048 code_buffer_.push_back(0);
1049 code_buffer_.push_back(0);
1050 code_buffer_.push_back(0);
1051
1052 DCHECK_LT(reg, 8);
1053 code_buffer_.push_back(0x58 + reg); // pop reg
1054
1055 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1056}
1057
1058void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1059 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1060 << BuildInsnString(entry->fmt, lir, 0);
1061 for (int i = 0; i < GetInsnSize(lir); ++i) {
1062 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1063 }
1064}
1065
1066/*
1067 * Assemble the LIR into binary instruction format. Note that we may
1068 * discover that pc-relative displacements may not fit the selected
1069 * instruction. In those cases we will try to substitute a new code
1070 * sequence or request that the trace be shortened and retried.
1071 */
buzbee0d829482013-10-11 15:24:55 -07001072AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001073 LIR *lir;
1074 AssemblerStatus res = kSuccess; // Assume success
1075
1076 const bool kVerbosePcFixup = false;
1077 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001078 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001079 continue;
1080 }
1081
1082 if (lir->flags.is_nop) {
1083 continue;
1084 }
1085
buzbeeb48819d2013-09-14 16:15:25 -07001086 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001087 switch (lir->opcode) {
1088 case kX86Jcc8: {
1089 LIR *target_lir = lir->target;
1090 DCHECK(target_lir != NULL);
1091 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001092 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001093 if (IS_SIMM8(lir->operands[0])) {
1094 pc = lir->offset + 2 /* opcode + rel8 */;
1095 } else {
1096 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1097 }
buzbee0d829482013-10-11 15:24:55 -07001098 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001099 delta = target - pc;
1100 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1101 if (kVerbosePcFixup) {
1102 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1103 << " delta: " << delta << " old delta: " << lir->operands[0];
1104 }
1105 lir->opcode = kX86Jcc32;
1106 SetupResourceMasks(lir);
1107 res = kRetryAll;
1108 }
1109 if (kVerbosePcFixup) {
1110 LOG(INFO) << "Source:";
1111 DumpLIRInsn(lir, 0);
1112 LOG(INFO) << "Target:";
1113 DumpLIRInsn(target_lir, 0);
1114 LOG(INFO) << "Delta " << delta;
1115 }
1116 lir->operands[0] = delta;
1117 break;
1118 }
1119 case kX86Jcc32: {
1120 LIR *target_lir = lir->target;
1121 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001122 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1123 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001124 int delta = target - pc;
1125 if (kVerbosePcFixup) {
1126 LOG(INFO) << "Source:";
1127 DumpLIRInsn(lir, 0);
1128 LOG(INFO) << "Target:";
1129 DumpLIRInsn(target_lir, 0);
1130 LOG(INFO) << "Delta " << delta;
1131 }
1132 lir->operands[0] = delta;
1133 break;
1134 }
1135 case kX86Jmp8: {
1136 LIR *target_lir = lir->target;
1137 DCHECK(target_lir != NULL);
1138 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001139 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001140 if (IS_SIMM8(lir->operands[0])) {
1141 pc = lir->offset + 2 /* opcode + rel8 */;
1142 } else {
1143 pc = lir->offset + 5 /* opcode + rel32 */;
1144 }
buzbee0d829482013-10-11 15:24:55 -07001145 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001146 delta = target - pc;
1147 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1148 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001149 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001150 if (kVerbosePcFixup) {
1151 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1152 }
1153 res = kRetryAll;
1154 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1155 if (kVerbosePcFixup) {
1156 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1157 }
1158 lir->opcode = kX86Jmp32;
1159 SetupResourceMasks(lir);
1160 res = kRetryAll;
1161 }
1162 lir->operands[0] = delta;
1163 break;
1164 }
1165 case kX86Jmp32: {
1166 LIR *target_lir = lir->target;
1167 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001168 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1169 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001170 int delta = target - pc;
1171 lir->operands[0] = delta;
1172 break;
1173 }
1174 default:
Mark Mendell67c39c42014-01-31 17:28:00 -08001175 if (lir->flags.fixup == kFixupLoad) {
1176 LIR *target_lir = lir->target;
1177 DCHECK(target_lir != NULL);
1178 CodeOffset target = target_lir->offset;
1179 lir->operands[2] = target;
1180 int newSize = GetInsnSize(lir);
1181 if (newSize != lir->flags.size) {
1182 lir->flags.size = newSize;
1183 res = kRetryAll;
1184 }
1185 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001186 break;
1187 }
1188 }
1189
1190 /*
1191 * If one of the pc-relative instructions expanded we'll have
1192 * to make another pass. Don't bother to fully assemble the
1193 * instruction.
1194 */
1195 if (res != kSuccess) {
1196 continue;
1197 }
1198 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1199 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1200 size_t starting_cbuf_size = code_buffer_.size();
1201 switch (entry->kind) {
1202 case kData: // 4 bytes of data
1203 code_buffer_.push_back(lir->operands[0]);
1204 break;
1205 case kNullary: // 1 byte of opcode
1206 DCHECK_EQ(0, entry->skeleton.prefix1);
1207 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001208 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001209 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1210 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1211 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1212 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001213 case kRegOpcode: // lir operands - 0: reg
1214 EmitOpRegOpcode(entry, lir->operands[0]);
1215 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001216 case kReg: // lir operands - 0: reg
1217 EmitOpReg(entry, lir->operands[0]);
1218 break;
1219 case kMem: // lir operands - 0: base, 1: disp
1220 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1221 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001222 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1223 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1224 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001225 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1226 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1227 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001228 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1229 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1230 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001231 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1232 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1233 lir->operands[3], lir->operands[4]);
1234 break;
1235 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1236 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1237 break;
1238 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1239 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1240 lir->operands[3], lir->operands[4]);
1241 break;
1242 case kRegThread: // lir operands - 0: reg, 1: disp
1243 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1244 break;
1245 case kRegReg: // lir operands - 0: reg1, 1: reg2
1246 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1247 break;
1248 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1249 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1250 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001251 case kRegRegImmRev:
1252 EmitRegRegImmRev(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1253 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001254 case kRegRegImm:
1255 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1256 break;
Mark Mendell4708dcd2014-01-22 09:05:18 -08001257 case kRegMemImm:
1258 EmitRegMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1259 lir->operands[3]);
1260 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001261 case kRegImm: // lir operands - 0: reg, 1: immediate
1262 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1263 break;
1264 case kThreadImm: // lir operands - 0: disp, 1: immediate
1265 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1266 break;
1267 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1268 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1269 break;
1270 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1271 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1272 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001273 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001274 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1275 break;
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001276 case kShiftMemCl: // lir operands - 0: base, 1:displacement, 2: cl
1277 EmitShiftMemCl(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1278 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001279 case kRegCond: // lir operands - 0: reg, 1: condition
1280 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1281 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001282 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1283 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1284 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001285 case kJmp: // lir operands - 0: rel
1286 EmitJmp(entry, lir->operands[0]);
1287 break;
1288 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1289 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1290 break;
1291 case kCall:
1292 switch (entry->opcode) {
1293 case kX86CallM: // lir operands - 0: base, 1: disp
1294 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1295 break;
1296 case kX86CallT: // lir operands - 0: disp
1297 EmitCallThread(entry, lir->operands[0]);
1298 break;
1299 default:
1300 EmitUnimplemented(entry, lir);
1301 break;
1302 }
1303 break;
1304 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1305 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1306 lir->operands[3], lir->operands[4]);
1307 break;
1308 case kMacro:
1309 EmitMacro(entry, lir->operands[0], lir->offset);
1310 break;
1311 default:
1312 EmitUnimplemented(entry, lir);
1313 break;
1314 }
1315 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1316 code_buffer_.size() - starting_cbuf_size)
1317 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1318 }
1319 return res;
1320}
1321
buzbeeb48819d2013-09-14 16:15:25 -07001322// LIR offset assignment.
1323// TODO: consolidate w/ Arm assembly mechanism.
1324int X86Mir2Lir::AssignInsnOffsets() {
1325 LIR* lir;
1326 int offset = 0;
1327
1328 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1329 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001330 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001331 if (!lir->flags.is_nop) {
1332 offset += lir->flags.size;
1333 }
1334 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1335 if (offset & 0x2) {
1336 offset += 2;
1337 lir->operands[0] = 1;
1338 } else {
1339 lir->operands[0] = 0;
1340 }
1341 }
1342 /* Pseudo opcodes don't consume space */
1343 }
1344 return offset;
1345}
1346
1347/*
1348 * Walk the compilation unit and assign offsets to instructions
1349 * and literals and compute the total size of the compiled unit.
1350 * TODO: consolidate w/ Arm assembly mechanism.
1351 */
1352void X86Mir2Lir::AssignOffsets() {
1353 int offset = AssignInsnOffsets();
1354
1355 /* Const values have to be word aligned */
1356 offset = (offset + 3) & ~3;
1357
1358 /* Set up offsets for literals */
1359 data_offset_ = offset;
1360
1361 offset = AssignLiteralOffset(offset);
1362
1363 offset = AssignSwitchTablesOffset(offset);
1364
1365 offset = AssignFillArrayDataOffset(offset);
1366
1367 total_size_ = offset;
1368}
1369
1370/*
1371 * Go over each instruction in the list and calculate the offset from the top
1372 * before sending them off to the assembler. If out-of-range branch distance is
1373 * seen rearrange the instructions a bit to correct it.
1374 * TODO: consolidate w/ Arm assembly mechanism.
1375 */
1376void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001377 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001378 AssignOffsets();
1379 int assembler_retries = 0;
1380 /*
1381 * Assemble here. Note that we generate code with optimistic assumptions
1382 * and if found now to work, we'll have to redo the sequence and retry.
1383 */
1384
1385 while (true) {
1386 AssemblerStatus res = AssembleInstructions(0);
1387 if (res == kSuccess) {
1388 break;
1389 } else {
1390 assembler_retries++;
1391 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1392 CodegenDump();
1393 LOG(FATAL) << "Assembler error - too many retries";
1394 }
1395 // Redo offsets and try again
1396 AssignOffsets();
1397 code_buffer_.clear();
1398 }
1399 }
1400
1401 // Install literals
1402 InstallLiteralPools();
1403
1404 // Install switch tables
1405 InstallSwitchTables();
1406
1407 // Install fill array data
1408 InstallFillArrayData();
1409
1410 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001411 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001412 CreateMappingTables();
1413
buzbeea61f4952013-08-23 14:27:06 -07001414 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001415 CreateNativeGcMap();
1416}
1417
Brian Carlstrom7940e442013-07-12 13:46:57 -07001418} // namespace art