blob: 14278a4abf2cc13d340785ff1d322c978b4cd392 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
29LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070030 int reg1, int base, int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
32 current_dalvik_offset_, reg1, base, offset);
33 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
43LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code,
44 int base, int offset, int check_value, ThrowKind kind) {
45 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
46 current_dalvik_offset_, base, check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base, offset, check_value);
48 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
64 LoadValueDirectWideFixed(rl_src1, r0, r1);
65 LoadValueDirectWideFixed(rl_src2, r2, r3);
66 // Compute (r1:r0) = (r1:r0) - (r3:r2)
67 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
68 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
69 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
70 NewLIR2(kX86Movzx8RR, r2, r2);
71 OpReg(kOpNeg, r2); // r2 = -r2
72 OpRegReg(kOpOr, r0, r1); // r0 = high | low - sets ZF
73 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
74 NewLIR2(kX86Movzx8RR, r0, r0);
75 OpRegReg(kOpOr, r0, r2); // r0 = r0 | r2
76 RegLocation rl_result = LocCReturn();
77 StoreValue(rl_dest, rl_result);
78}
79
80X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
81 switch (cond) {
82 case kCondEq: return kX86CondEq;
83 case kCondNe: return kX86CondNe;
84 case kCondCs: return kX86CondC;
85 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000086 case kCondUlt: return kX86CondC;
87 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070088 case kCondMi: return kX86CondS;
89 case kCondPl: return kX86CondNs;
90 case kCondVs: return kX86CondO;
91 case kCondVc: return kX86CondNo;
92 case kCondHi: return kX86CondA;
93 case kCondLs: return kX86CondBe;
94 case kCondGe: return kX86CondGe;
95 case kCondLt: return kX86CondL;
96 case kCondGt: return kX86CondG;
97 case kCondLe: return kX86CondLe;
98 case kCondAl:
99 case kCondNv: LOG(FATAL) << "Should not reach here";
100 }
101 return kX86CondO;
102}
103
104LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, int src1, int src2,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700105 LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700106 NewLIR2(kX86Cmp32RR, src1, src2);
107 X86ConditionCode cc = X86ConditionEncoding(cond);
108 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
109 cc);
110 branch->target = target;
111 return branch;
112}
113
114LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, int reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700115 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700116 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
117 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
118 NewLIR2(kX86Test32RR, reg, reg);
119 } else {
120 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg, check_value);
121 }
122 X86ConditionCode cc = X86ConditionEncoding(cond);
123 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
124 branch->target = target;
125 return branch;
126}
127
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700128LIR* X86Mir2Lir::OpRegCopyNoInsert(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700129 if (X86_FPREG(r_dest) || X86_FPREG(r_src))
130 return OpFpRegCopy(r_dest, r_src);
131 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
132 r_dest, r_src);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800133 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700134 res->flags.is_nop = true;
135 }
136 return res;
137}
138
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700139LIR* X86Mir2Lir::OpRegCopy(int r_dest, int r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700140 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
141 AppendLIR(res);
142 return res;
143}
144
145void X86Mir2Lir::OpRegCopyWide(int dest_lo, int dest_hi,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700146 int src_lo, int src_hi) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700147 bool dest_fp = X86_FPREG(dest_lo) && X86_FPREG(dest_hi);
148 bool src_fp = X86_FPREG(src_lo) && X86_FPREG(src_hi);
149 assert(X86_FPREG(src_lo) == X86_FPREG(src_hi));
150 assert(X86_FPREG(dest_lo) == X86_FPREG(dest_hi));
151 if (dest_fp) {
152 if (src_fp) {
153 OpRegCopy(S2d(dest_lo, dest_hi), S2d(src_lo, src_hi));
154 } else {
155 // TODO: Prevent this from happening in the code. The result is often
156 // unused or could have been loaded more easily from memory.
157 NewLIR2(kX86MovdxrRR, dest_lo, src_lo);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000158 dest_hi = AllocTempDouble();
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 NewLIR2(kX86MovdxrRR, dest_hi, src_hi);
Razvan A Lupusoruf43adf62014-01-28 09:25:52 -0800160 NewLIR2(kX86PunpckldqRR, dest_lo, dest_hi);
Bill Buzbeed61ba4b2014-01-13 21:44:01 +0000161 FreeTemp(dest_hi);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700162 }
163 } else {
164 if (src_fp) {
165 NewLIR2(kX86MovdrxRR, dest_lo, src_lo);
166 NewLIR2(kX86PsrlqRI, src_lo, 32);
167 NewLIR2(kX86MovdrxRR, dest_hi, src_lo);
168 } else {
169 // Handle overlap
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800170 if (src_hi == dest_lo && src_lo == dest_hi) {
171 // Deal with cycles.
172 int temp_reg = AllocTemp();
173 OpRegCopy(temp_reg, dest_hi);
174 OpRegCopy(dest_hi, dest_lo);
175 OpRegCopy(dest_lo, temp_reg);
176 FreeTemp(temp_reg);
177 } else if (src_hi == dest_lo) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 OpRegCopy(dest_hi, src_hi);
179 OpRegCopy(dest_lo, src_lo);
180 } else {
181 OpRegCopy(dest_lo, src_lo);
182 OpRegCopy(dest_hi, src_hi);
183 }
184 }
185 }
186}
187
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700188void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800189 RegLocation rl_result;
190 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
191 RegLocation rl_dest = mir_graph_->GetDest(mir);
192 rl_src = LoadValue(rl_src, kCoreReg);
Vladimir Markoa1a70742014-03-03 10:28:05 +0000193 ConditionCode ccode = mir->meta.ccode;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800194
195 // The kMirOpSelect has two variants, one for constants and one for moves.
196 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
197
198 if (is_constant_case) {
199 int true_val = mir->dalvikInsn.vB;
200 int false_val = mir->dalvikInsn.vC;
201 rl_result = EvalLoc(rl_dest, kCoreReg, true);
202
203 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000204 * For ccode == kCondEq:
205 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800206 * 1) When the true case is zero and result_reg is not same as src_reg:
207 * xor result_reg, result_reg
208 * cmp $0, src_reg
209 * mov t1, $false_case
210 * cmovnz result_reg, t1
211 * 2) When the false case is zero and result_reg is not same as src_reg:
212 * xor result_reg, result_reg
213 * cmp $0, src_reg
214 * mov t1, $true_case
215 * cmovz result_reg, t1
216 * 3) All other cases (we do compare first to set eflags):
217 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000218 * mov result_reg, $false_case
219 * mov t1, $true_case
220 * cmovz result_reg, t1
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800221 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000222 const bool result_reg_same_as_src = (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800223 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
224 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
225 const bool catch_all_case = !(true_zero_case || false_zero_case);
226
227 if (true_zero_case || false_zero_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000228 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800229 }
230
231 if (true_zero_case || false_zero_case || catch_all_case) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000232 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800233 }
234
235 if (catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000236 OpRegImm(kOpMov, rl_result.reg.GetReg(), false_val);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800237 }
238
239 if (true_zero_case || false_zero_case || catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000240 ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
241 int immediateForTemp = true_zero_case ? false_val : true_val;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800242 int temp1_reg = AllocTemp();
243 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
244
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000245 OpCondRegReg(kOpCmov, cc, rl_result.reg.GetReg(), temp1_reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800246
247 FreeTemp(temp1_reg);
248 }
249 } else {
250 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
251 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
252 rl_true = LoadValue(rl_true, kCoreReg);
253 rl_false = LoadValue(rl_false, kCoreReg);
254 rl_result = EvalLoc(rl_dest, kCoreReg, true);
255
256 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000257 * For ccode == kCondEq:
258 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800259 * 1) When true case is already in place:
260 * cmp $0, src_reg
261 * cmovnz result_reg, false_reg
262 * 2) When false case is already in place:
263 * cmp $0, src_reg
264 * cmovz result_reg, true_reg
265 * 3) When neither cases are in place:
266 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000267 * mov result_reg, false_reg
268 * cmovz result_reg, true_reg
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800269 */
270
271 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000272 OpRegImm(kOpCmp, rl_src.reg.GetReg(), 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800273
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000274 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000275 OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg.GetReg(), rl_false.reg.GetReg());
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000276 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000277 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800278 } else {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000279 OpRegCopy(rl_result.reg.GetReg(), rl_false.reg.GetReg());
280 OpCondRegReg(kOpCmov, ccode, rl_result.reg.GetReg(), rl_true.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800281 }
282 }
283
284 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700285}
286
287void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700288 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700289 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
290 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000291 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800292
293 if (rl_src1.is_const) {
294 std::swap(rl_src1, rl_src2);
295 ccode = FlipComparisonOrder(ccode);
296 }
297 if (rl_src2.is_const) {
298 // Do special compare/branch against simple const operand
299 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
300 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
301 return;
302 }
303
Brian Carlstrom7940e442013-07-12 13:46:57 -0700304 FlushAllRegs();
305 LockCallTemps(); // Prepare for explicit register usage
306 LoadValueDirectWideFixed(rl_src1, r0, r1);
307 LoadValueDirectWideFixed(rl_src2, r2, r3);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700308 // Swap operands and condition code to prevent use of zero flag.
309 if (ccode == kCondLe || ccode == kCondGt) {
310 // Compute (r3:r2) = (r3:r2) - (r1:r0)
311 OpRegReg(kOpSub, r2, r0); // r2 = r2 - r0
312 OpRegReg(kOpSbc, r3, r1); // r3 = r3 - r1 - CF
313 } else {
314 // Compute (r1:r0) = (r1:r0) - (r3:r2)
315 OpRegReg(kOpSub, r0, r2); // r0 = r0 - r2
316 OpRegReg(kOpSbc, r1, r3); // r1 = r1 - r3 - CF
317 }
318 switch (ccode) {
319 case kCondEq:
320 case kCondNe:
321 OpRegReg(kOpOr, r0, r1); // r0 = r0 | r1
322 break;
323 case kCondLe:
324 ccode = kCondGe;
325 break;
326 case kCondGt:
327 ccode = kCondLt;
328 break;
329 case kCondLt:
330 case kCondGe:
331 break;
332 default:
333 LOG(FATAL) << "Unexpected ccode: " << ccode;
334 }
335 OpCondBranch(ccode, taken);
336}
337
Mark Mendell412d4f82013-12-18 13:32:36 -0800338void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
339 int64_t val, ConditionCode ccode) {
340 int32_t val_lo = Low32Bits(val);
341 int32_t val_hi = High32Bits(val);
342 LIR* taken = &block_label_list_[bb->taken];
343 LIR* not_taken = &block_label_list_[bb->fall_through];
344 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000345 int32_t low_reg = rl_src1.reg.GetReg();
346 int32_t high_reg = rl_src1.reg.GetHighReg();
Mark Mendell412d4f82013-12-18 13:32:36 -0800347
348 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
349 int t_reg = AllocTemp();
350 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
351 FreeTemp(t_reg);
352 OpCondBranch(ccode, taken);
353 return;
354 }
355
356 OpRegImm(kOpCmp, high_reg, val_hi);
357 switch (ccode) {
358 case kCondEq:
359 case kCondNe:
360 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
361 break;
362 case kCondLt:
363 OpCondBranch(kCondLt, taken);
364 OpCondBranch(kCondGt, not_taken);
365 ccode = kCondUlt;
366 break;
367 case kCondLe:
368 OpCondBranch(kCondLt, taken);
369 OpCondBranch(kCondGt, not_taken);
370 ccode = kCondLs;
371 break;
372 case kCondGt:
373 OpCondBranch(kCondGt, taken);
374 OpCondBranch(kCondLt, not_taken);
375 ccode = kCondHi;
376 break;
377 case kCondGe:
378 OpCondBranch(kCondGt, taken);
379 OpCondBranch(kCondLt, not_taken);
380 ccode = kCondUge;
381 break;
382 default:
383 LOG(FATAL) << "Unexpected ccode: " << ccode;
384 }
385 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
386}
387
Mark Mendell2bf31e62014-01-23 12:13:40 -0800388void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
389 // It does not make sense to calculate magic and shift for zero divisor.
390 DCHECK_NE(divisor, 0);
391
392 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
393 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
394 * The magic number M and shift S can be calculated in the following way:
395 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
396 * where divisor(d) >=2.
397 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
398 * where divisor(d) <= -2.
399 * Thus nc can be calculated like:
400 * nc = 2^31 + 2^31 % d - 1, where d >= 2
401 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
402 *
403 * So the shift p is the smallest p satisfying
404 * 2^p > nc * (d - 2^p % d), where d >= 2
405 * 2^p > nc * (d + 2^p % d), where d <= -2.
406 *
407 * the magic number M is calcuated by
408 * M = (2^p + d - 2^p % d) / d, where d >= 2
409 * M = (2^p - d - 2^p % d) / d, where d <= -2.
410 *
411 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
412 * the shift number S.
413 */
414
415 int32_t p = 31;
416 const uint32_t two31 = 0x80000000U;
417
418 // Initialize the computations.
419 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
420 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
421 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
422 uint32_t quotient1 = two31 / abs_nc;
423 uint32_t remainder1 = two31 % abs_nc;
424 uint32_t quotient2 = two31 / abs_d;
425 uint32_t remainder2 = two31 % abs_d;
426
427 /*
428 * To avoid handling both positive and negative divisor, Hacker's Delight
429 * introduces a method to handle these 2 cases together to avoid duplication.
430 */
431 uint32_t delta;
432 do {
433 p++;
434 quotient1 = 2 * quotient1;
435 remainder1 = 2 * remainder1;
436 if (remainder1 >= abs_nc) {
437 quotient1++;
438 remainder1 = remainder1 - abs_nc;
439 }
440 quotient2 = 2 * quotient2;
441 remainder2 = 2 * remainder2;
442 if (remainder2 >= abs_d) {
443 quotient2++;
444 remainder2 = remainder2 - abs_d;
445 }
446 delta = abs_d - remainder2;
447 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
448
449 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
450 shift = p - 32;
451}
452
Brian Carlstrom7940e442013-07-12 13:46:57 -0700453RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700454 int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700455 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
456 return rl_dest;
457}
458
Mark Mendell2bf31e62014-01-23 12:13:40 -0800459RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
460 int imm, bool is_div) {
461 // Use a multiply (and fixup) to perform an int div/rem by a constant.
462
463 // We have to use fixed registers, so flush all the temps.
464 FlushAllRegs();
465 LockCallTemps(); // Prepare for explicit register usage.
466
467 // Assume that the result will be in EDX.
468 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000469 RegStorage(RegStorage::k32BitSolo, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800470
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700471 // handle div/rem by 1 special case.
472 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800473 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700474 // x / 1 == x.
475 StoreValue(rl_result, rl_src);
476 } else {
477 // x % 1 == 0.
478 LoadConstantNoClobber(r0, 0);
479 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000480 rl_result.reg.SetReg(r0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700481 }
482 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
483 if (is_div) {
484 LIR *minint_branch = 0;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800485 LoadValueDirectFixed(rl_src, r0);
486 OpRegImm(kOpCmp, r0, 0x80000000);
487 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
488
489 // for x != MIN_INT, x / -1 == -x.
490 NewLIR1(kX86Neg32R, r0);
491
492 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
493 // The target for cmp/jmp above.
494 minint_branch->target = NewLIR0(kPseudoTargetLabel);
495 // EAX already contains the right value (0x80000000),
496 branch_around->target = NewLIR0(kPseudoTargetLabel);
497 } else {
498 // x % -1 == 0.
499 LoadConstantNoClobber(r0, 0);
500 }
501 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000502 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800503 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700504 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800505 // Use H.S.Warren's Hacker's Delight Chapter 10 and
506 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
507 int magic, shift;
508 CalculateMagicAndShift(imm, magic, shift);
509
510 /*
511 * For imm >= 2,
512 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
513 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
514 * For imm <= -2,
515 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
516 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
517 * We implement this algorithm in the following way:
518 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
519 * 2. if imm > 0 and magic < 0, add numerator to EDX
520 * if imm < 0 and magic > 0, sub numerator from EDX
521 * 3. if S !=0, SAR S bits for EDX
522 * 4. add 1 to EDX if EDX < 0
523 * 5. Thus, EDX is the quotient
524 */
525
526 // Numerator into EAX.
527 int numerator_reg = -1;
528 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
529 // We will need the value later.
530 if (rl_src.location == kLocPhysReg) {
531 // We can use it directly.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000532 DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
533 numerator_reg = rl_src.reg.GetReg();
Mark Mendell2bf31e62014-01-23 12:13:40 -0800534 } else {
535 LoadValueDirectFixed(rl_src, r1);
536 numerator_reg = r1;
537 }
538 OpRegCopy(r0, numerator_reg);
539 } else {
540 // Only need this once. Just put it into EAX.
541 LoadValueDirectFixed(rl_src, r0);
542 }
543
544 // EDX = magic.
545 LoadConstantNoClobber(r2, magic);
546
547 // EDX:EAX = magic & dividend.
548 NewLIR1(kX86Imul32DaR, r2);
549
550 if (imm > 0 && magic < 0) {
551 // Add numerator to EDX.
552 DCHECK_NE(numerator_reg, -1);
553 NewLIR2(kX86Add32RR, r2, numerator_reg);
554 } else if (imm < 0 && magic > 0) {
555 DCHECK_NE(numerator_reg, -1);
556 NewLIR2(kX86Sub32RR, r2, numerator_reg);
557 }
558
559 // Do we need the shift?
560 if (shift != 0) {
561 // Shift EDX by 'shift' bits.
562 NewLIR2(kX86Sar32RI, r2, shift);
563 }
564
565 // Add 1 to EDX if EDX < 0.
566
567 // Move EDX to EAX.
568 OpRegCopy(r0, r2);
569
570 // Move sign bit to bit 0, zeroing the rest.
571 NewLIR2(kX86Shr32RI, r2, 31);
572
573 // EDX = EDX + EAX.
574 NewLIR2(kX86Add32RR, r2, r0);
575
576 // Quotient is in EDX.
577 if (!is_div) {
578 // We need to compute the remainder.
579 // Remainder is divisor - (quotient * imm).
580 DCHECK_NE(numerator_reg, -1);
581 OpRegCopy(r0, numerator_reg);
582
583 // EAX = numerator * imm.
584 OpRegRegImm(kOpMul, r2, r2, imm);
585
586 // EDX -= EAX.
587 NewLIR2(kX86Sub32RR, r0, r2);
588
589 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000590 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800591 }
592 }
593
594 return rl_result;
595}
596
Brian Carlstrom7940e442013-07-12 13:46:57 -0700597RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, int reg_lo,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700598 int reg_hi, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700599 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
600 return rl_dest;
601}
602
Mark Mendell2bf31e62014-01-23 12:13:40 -0800603RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
604 RegLocation rl_src2, bool is_div, bool check_zero) {
605 // We have to use fixed registers, so flush all the temps.
606 FlushAllRegs();
607 LockCallTemps(); // Prepare for explicit register usage.
608
609 // Load LHS into EAX.
610 LoadValueDirectFixed(rl_src1, r0);
611
612 // Load RHS into EBX.
613 LoadValueDirectFixed(rl_src2, r1);
614
615 // Copy LHS sign bit into EDX.
616 NewLIR0(kx86Cdq32Da);
617
618 if (check_zero) {
619 // Handle division by zero case.
620 GenImmedCheck(kCondEq, r1, 0, kThrowDivZero);
621 }
622
623 // Have to catch 0x80000000/-1 case, or we will get an exception!
624 OpRegImm(kOpCmp, r1, -1);
625 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
626
627 // RHS is -1.
628 OpRegImm(kOpCmp, r0, 0x80000000);
629 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
630
631 // In 0x80000000/-1 case.
632 if (!is_div) {
633 // For DIV, EAX is already right. For REM, we need EDX 0.
634 LoadConstantNoClobber(r2, 0);
635 }
636 LIR* done = NewLIR1(kX86Jmp8, 0);
637
638 // Expected case.
639 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
640 minint_branch->target = minus_one_branch->target;
641 NewLIR1(kX86Idivmod32DaR, r1);
642 done->target = NewLIR0(kPseudoTargetLabel);
643
644 // Result is in EAX for div and EDX for rem.
645 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000646 RegStorage(RegStorage::k32BitSolo, r0), INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800647 if (!is_div) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000648 rl_result.reg.SetReg(r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800649 }
650 return rl_result;
651}
652
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700653bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700654 DCHECK_EQ(cu_->instruction_set, kX86);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800655
656 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700657 RegLocation rl_src1 = info->args[0];
658 RegLocation rl_src2 = info->args[1];
659 rl_src1 = LoadValue(rl_src1, kCoreReg);
660 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800661
Brian Carlstrom7940e442013-07-12 13:46:57 -0700662 RegLocation rl_dest = InlineTarget(info);
663 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800664
665 /*
666 * If the result register is the same as the second element, then we need to be careful.
667 * The reason is that the first copy will inadvertently clobber the second element with
668 * the first one thus yielding the wrong result. Thus we do a swap in that case.
669 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000670 if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800671 std::swap(rl_src1, rl_src2);
672 }
673
674 // Pick the first integer as min/max.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000675 OpRegCopy(rl_result.reg.GetReg(), rl_src1.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800676
677 // If the integers are both in the same register, then there is nothing else to do
678 // because they are equal and we have already moved one into the result.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000679 if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800680 // It is possible we didn't pick correctly so do the actual comparison now.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000681 OpRegReg(kOpCmp, rl_src1.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800682
683 // Conditionally move the other integer into the destination register.
684 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000685 OpCondRegReg(kOpCmov, condition_code, rl_result.reg.GetReg(), rl_src2.reg.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800686 }
687
Brian Carlstrom7940e442013-07-12 13:46:57 -0700688 StoreValue(rl_dest, rl_result);
689 return true;
690}
691
Vladimir Markoe508a202013-11-04 15:24:22 +0000692bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
693 RegLocation rl_src_address = info->args[0]; // long address
694 rl_src_address.wide = 0; // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800695 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000696 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
697 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
698 if (size == kLong) {
699 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000700 LoadBaseDispWide(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000701 StoreValueWide(rl_dest, rl_result);
702 } else {
703 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
704 // Unaligned access is allowed on x86.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000705 LoadBaseDisp(rl_address.reg.GetReg(), 0, rl_result.reg.GetReg(), size, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000706 StoreValue(rl_dest, rl_result);
707 }
708 return true;
709}
710
711bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
712 RegLocation rl_src_address = info->args[0]; // long address
713 rl_src_address.wide = 0; // ignore high half in info->args[1]
714 RegLocation rl_src_value = info->args[2]; // [size] value
715 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
716 if (size == kLong) {
717 // Unaligned access is allowed on x86.
718 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000719 StoreBaseDispWide(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), rl_value.reg.GetHighReg());
Vladimir Markoe508a202013-11-04 15:24:22 +0000720 } else {
721 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
722 // Unaligned access is allowed on x86.
723 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000724 StoreBaseDisp(rl_address.reg.GetReg(), 0, rl_value.reg.GetReg(), size);
Vladimir Markoe508a202013-11-04 15:24:22 +0000725 }
726 return true;
727}
728
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700729void X86Mir2Lir::OpLea(int rBase, int reg1, int reg2, int scale, int offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700730 NewLIR5(kX86Lea32RA, rBase, reg1, reg2, scale, offset);
731}
732
Ian Rogers468532e2013-08-05 10:56:33 -0700733void X86Mir2Lir::OpTlsCmp(ThreadOffset offset, int val) {
734 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700735}
736
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700737static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, int reg) {
738 return !rl.reg.IsInvalid() && rl.reg.GetReg() == reg && (pMir2Lir->IsLive(reg) || rl.home);
739}
740
Vladimir Marko1c282e22013-11-21 14:49:47 +0000741bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Vladimir Markoc29bb612013-11-27 16:47:25 +0000742 DCHECK_EQ(cu_->instruction_set, kX86);
743 // Unused - RegLocation rl_src_unsafe = info->args[0];
744 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
745 RegLocation rl_src_offset = info->args[2]; // long low
746 rl_src_offset.wide = 0; // ignore high half in info->args[3]
747 RegLocation rl_src_expected = info->args[4]; // int, long or Object
748 // If is_long, high half is in info->args[5]
749 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
750 // If is_long, high half is in info->args[7]
751
752 if (is_long) {
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700753 // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
754 // TODO: CFI support.
Vladimir Marko70b797d2013-12-03 15:25:24 +0000755 FlushAllRegs();
756 LockCallTemps();
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000757 LoadValueDirectWideFixed(rl_src_expected, rAX, rDX);
758 LoadValueDirectWideFixed(rl_src_new_value, rBX, rCX);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000759 NewLIR1(kX86Push32R, rDI);
760 MarkTemp(rDI);
761 LockTemp(rDI);
762 NewLIR1(kX86Push32R, rSI);
763 MarkTemp(rSI);
764 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000765 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700766 int srcObjSp = IsInReg(this, rl_src_obj, rSI) ? 0
767 : (IsInReg(this, rl_src_obj, rDI) ? 4
768 : (SRegOffset(rl_src_obj.s_reg_low) + push_offset));
769 LoadWordDisp(TargetReg(kSp), srcObjSp, rDI);
770 int srcOffsetSp = IsInReg(this, rl_src_offset, rSI) ? 0
771 : (IsInReg(this, rl_src_offset, rDI) ? 4
772 : (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
773 LoadWordDisp(TargetReg(kSp), srcOffsetSp, rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000774 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800775
776 // After a store we need to insert barrier in case of potential load. Since the
777 // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
778 GenMemBarrier(kStoreLoad);
779
Vladimir Marko70b797d2013-12-03 15:25:24 +0000780 FreeTemp(rSI);
781 UnmarkTemp(rSI);
782 NewLIR1(kX86Pop32R, rSI);
783 FreeTemp(rDI);
784 UnmarkTemp(rDI);
785 NewLIR1(kX86Pop32R, rDI);
786 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000787 } else {
788 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
789 FlushReg(r0);
790 LockTemp(r0);
791
Vladimir Markoc29bb612013-11-27 16:47:25 +0000792 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
793 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
794
795 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
796 // Mark card for object assuming new value is stored.
797 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000798 MarkGCCard(rl_new_value.reg.GetReg(), rl_object.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000799 LockTemp(r0);
800 }
801
802 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
803 LoadValueDirect(rl_src_expected, r0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000804 NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000805
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800806 // After a store we need to insert barrier in case of potential load. Since the
807 // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
808 GenMemBarrier(kStoreLoad);
809
Vladimir Markoc29bb612013-11-27 16:47:25 +0000810 FreeTemp(r0);
811 }
812
813 // Convert ZF to boolean
814 RegLocation rl_dest = InlineTarget(info); // boolean place for result
815 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000816 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
817 NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000818 StoreValue(rl_dest, rl_result);
819 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700820}
821
822LIR* X86Mir2Lir::OpPcRelLoad(int reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800823 CHECK(base_of_code_ != nullptr);
824
825 // Address the start of the method
826 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
827 LoadValueDirectFixed(rl_method, reg);
828 store_method_addr_used_ = true;
829
830 // Load the proper value from the literal area.
831 // We don't know the proper offset for the value, so pick one that will force
832 // 4 byte offset. We will fix this up in the assembler later to have the right
833 // value.
834 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg, reg, 256, 0, 0, target);
835 res->target = target;
836 res->flags.fixup = kFixupLoad;
837 SetMemRefType(res, true, kLiteral);
838 store_method_addr_used_ = true;
839 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700840}
841
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700842LIR* X86Mir2Lir::OpVldm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700843 LOG(FATAL) << "Unexpected use of OpVldm for x86";
844 return NULL;
845}
846
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700847LIR* X86Mir2Lir::OpVstm(int rBase, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700848 LOG(FATAL) << "Unexpected use of OpVstm for x86";
849 return NULL;
850}
851
852void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
853 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700854 int first_bit, int second_bit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700855 int t_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000856 OpRegRegImm(kOpLsl, t_reg, rl_src.reg.GetReg(), second_bit - first_bit);
857 OpRegRegReg(kOpAdd, rl_result.reg.GetReg(), rl_src.reg.GetReg(), t_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700858 FreeTemp(t_reg);
859 if (first_bit != 0) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000860 OpRegRegImm(kOpLsl, rl_result.reg.GetReg(), rl_result.reg.GetReg(), first_bit);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700861 }
862}
863
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700864void X86Mir2Lir::GenDivZeroCheck(int reg_lo, int reg_hi) {
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800865 // We are not supposed to clobber either of the provided registers, so allocate
866 // a temporary to use for the check.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700867 int t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800868
869 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700870 OpRegRegReg(kOpOr, t_reg, reg_lo, reg_hi);
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800871
872 // In case of zero, throw ArithmeticException.
873 GenCheck(kCondEq, kThrowDivZero);
874
875 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700876 FreeTemp(t_reg);
877}
878
879// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700880LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogers468532e2013-08-05 10:56:33 -0700881 OpTlsCmp(Thread::ThreadFlagsOffset(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700882 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
883}
884
885// Decrement register and branch on condition
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700886LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, int reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700887 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800888 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700889}
890
buzbee11b63d12013-08-27 07:34:17 -0700891bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700892 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700893 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
894 return false;
895}
896
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700897LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700898 LOG(FATAL) << "Unexpected use of OpIT in x86";
899 return NULL;
900}
901
Mark Mendell4708dcd2014-01-22 09:05:18 -0800902void X86Mir2Lir::GenImulRegImm(int dest, int src, int val) {
903 switch (val) {
904 case 0:
905 NewLIR2(kX86Xor32RR, dest, dest);
906 break;
907 case 1:
908 OpRegCopy(dest, src);
909 break;
910 default:
911 OpRegRegImm(kOpMul, dest, src, val);
912 break;
913 }
914}
915
916void X86Mir2Lir::GenImulMemImm(int dest, int sreg, int displacement, int val) {
917 LIR *m;
918 switch (val) {
919 case 0:
920 NewLIR2(kX86Xor32RR, dest, dest);
921 break;
922 case 1:
923 LoadBaseDisp(rX86_SP, displacement, dest, kWord, sreg);
924 break;
925 default:
926 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest, rX86_SP,
927 displacement, val);
928 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
929 break;
930 }
931}
932
Mark Mendelle02d48f2014-01-15 11:19:23 -0800933void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700934 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800935 if (rl_src1.is_const) {
936 std::swap(rl_src1, rl_src2);
937 }
938 // Are we multiplying by a constant?
939 if (rl_src2.is_const) {
940 // Do special compare/branch against simple const operand
941 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
942 if (val == 0) {
943 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000944 OpRegReg(kOpXor, rl_result.reg.GetReg(), rl_result.reg.GetReg());
945 OpRegReg(kOpXor, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800946 StoreValueWide(rl_dest, rl_result);
947 return;
948 } else if (val == 1) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800949 StoreValueWide(rl_dest, rl_src1);
950 return;
951 } else if (val == 2) {
952 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
953 return;
954 } else if (IsPowerOfTwo(val)) {
955 int shift_amount = LowestSetBit(val);
956 if (!BadOverlap(rl_src1, rl_dest)) {
957 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
958 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
959 rl_src1, shift_amount);
960 StoreValueWide(rl_dest, rl_result);
961 return;
962 }
963 }
964
965 // Okay, just bite the bullet and do it.
966 int32_t val_lo = Low32Bits(val);
967 int32_t val_hi = High32Bits(val);
968 FlushAllRegs();
969 LockCallTemps(); // Prepare for explicit register usage.
970 rl_src1 = UpdateLocWide(rl_src1);
971 bool src1_in_reg = rl_src1.location == kLocPhysReg;
972 int displacement = SRegOffset(rl_src1.s_reg_low);
973
974 // ECX <- 1H * 2L
975 // EAX <- 1L * 2H
976 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000977 GenImulRegImm(r1, rl_src1.reg.GetHighReg(), val_lo);
978 GenImulRegImm(r0, rl_src1.reg.GetReg(), val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800979 } else {
980 GenImulMemImm(r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
981 GenImulMemImm(r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
982 }
983
984 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
985 NewLIR2(kX86Add32RR, r1, r0);
986
987 // EAX <- 2L
988 LoadConstantNoClobber(r0, val_lo);
989
990 // EDX:EAX <- 2L * 1L (double precision)
991 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000992 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800993 } else {
994 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
995 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
996 true /* is_load */, true /* is_64bit */);
997 }
998
999 // EDX <- EDX + ECX (add high words)
1000 NewLIR2(kX86Add32RR, r2, r1);
1001
1002 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001003 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1004 RegStorage(RegStorage::k64BitPair, r0, r2),
Mark Mendell4708dcd2014-01-22 09:05:18 -08001005 INVALID_SREG, INVALID_SREG};
1006 StoreValueWide(rl_dest, rl_result);
1007 return;
1008 }
1009
1010 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -08001011 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1012 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1013 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1014
Mark Mendell4708dcd2014-01-22 09:05:18 -08001015 FlushAllRegs();
1016 LockCallTemps(); // Prepare for explicit register usage.
1017 rl_src1 = UpdateLocWide(rl_src1);
1018 rl_src2 = UpdateLocWide(rl_src2);
1019
1020 // At this point, the VRs are in their home locations.
1021 bool src1_in_reg = rl_src1.location == kLocPhysReg;
1022 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1023
1024 // ECX <- 1H
1025 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001026 NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001027 } else {
1028 LoadBaseDisp(rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, r1,
1029 kWord, GetSRegHi(rl_src1.s_reg_low));
1030 }
1031
Mark Mendellde99bba2014-02-14 12:15:02 -08001032 if (is_square) {
1033 // Take advantage of the fact that the values are the same.
1034 // ECX <- ECX * 2L (1H * 2L)
1035 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001036 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001037 } else {
1038 int displacement = SRegOffset(rl_src2.s_reg_low);
1039 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1040 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1041 true /* is_load */, true /* is_64bit */);
1042 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001043
Mark Mendellde99bba2014-02-14 12:15:02 -08001044 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1045 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001046 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001047 // EAX <- 2H
1048 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001049 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001050 } else {
1051 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, r0,
1052 kWord, GetSRegHi(rl_src2.s_reg_low));
1053 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001054
Mark Mendellde99bba2014-02-14 12:15:02 -08001055 // EAX <- EAX * 1L (2H * 1L)
1056 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001057 NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001058 } else {
1059 int displacement = SRegOffset(rl_src1.s_reg_low);
1060 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1061 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1062 true /* is_load */, true /* is_64bit */);
1063 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001064
Mark Mendellde99bba2014-02-14 12:15:02 -08001065 // ECX <- ECX * 2L (1H * 2L)
1066 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001067 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001068 } else {
1069 int displacement = SRegOffset(rl_src2.s_reg_low);
1070 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1071 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1072 true /* is_load */, true /* is_64bit */);
1073 }
1074
1075 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1076 NewLIR2(kX86Add32RR, r1, r0);
1077 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001078
1079 // EAX <- 2L
1080 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001081 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001082 } else {
1083 LoadBaseDisp(rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, r0,
1084 kWord, rl_src2.s_reg_low);
1085 }
1086
1087 // EDX:EAX <- 2L * 1L (double precision)
1088 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001089 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001090 } else {
1091 int displacement = SRegOffset(rl_src1.s_reg_low);
1092 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1093 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1094 true /* is_load */, true /* is_64bit */);
1095 }
1096
1097 // EDX <- EDX + ECX (add high words)
1098 NewLIR2(kX86Add32RR, r2, r1);
1099
1100 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001101 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
1102 RegStorage(RegStorage::k64BitPair, r0, r2), INVALID_SREG, INVALID_SREG};
Mark Mendell4708dcd2014-01-22 09:05:18 -08001103 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001104}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001105
1106void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1107 Instruction::Code op) {
1108 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1109 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1110 if (rl_src.location == kLocPhysReg) {
1111 // Both operands are in registers.
Serguei Katkovab5545f2014-03-25 10:51:15 +07001112 // But we must ensure that rl_src is in pair
1113 rl_src = EvalLocWide(rl_src, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001114 if (rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001115 // The registers are the same, so we would clobber it before the use.
1116 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001117 OpRegCopy(temp_reg, rl_dest.reg.GetReg());
1118 rl_src.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001119 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001120 NewLIR2(x86op, rl_dest.reg.GetReg(), rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001121
1122 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001123 NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
1124 FreeTemp(rl_src.reg.GetReg());
1125 FreeTemp(rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001126 return;
1127 }
1128
1129 // RHS is in memory.
1130 DCHECK((rl_src.location == kLocDalvikFrame) ||
1131 (rl_src.location == kLocCompilerTemp));
1132 int rBase = TargetReg(kSp);
1133 int displacement = SRegOffset(rl_src.s_reg_low);
1134
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001135 LIR *lir = NewLIR3(x86op, rl_dest.reg.GetReg(), rBase, displacement + LOWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001136 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1137 true /* is_load */, true /* is64bit */);
1138 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001139 lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), rBase, displacement + HIWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001140 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1141 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001142}
1143
Mark Mendelle02d48f2014-01-15 11:19:23 -08001144void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1145 rl_dest = UpdateLocWide(rl_dest);
1146 if (rl_dest.location == kLocPhysReg) {
1147 // Ensure we are in a register pair
1148 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1149
1150 rl_src = UpdateLocWide(rl_src);
1151 GenLongRegOrMemOp(rl_result, rl_src, op);
1152 StoreFinalValueWide(rl_dest, rl_result);
1153 return;
1154 }
1155
1156 // It wasn't in registers, so it better be in memory.
1157 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1158 (rl_dest.location == kLocCompilerTemp));
1159 rl_src = LoadValueWide(rl_src, kCoreReg);
1160
1161 // Operate directly into memory.
1162 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1163 int rBase = TargetReg(kSp);
1164 int displacement = SRegOffset(rl_dest.s_reg_low);
1165
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001166 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, rl_src.reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001167 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1168 false /* is_load */, true /* is64bit */);
1169 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001170 lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001171 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1172 false /* is_load */, true /* is64bit */);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001173 FreeTemp(rl_src.reg.GetReg());
1174 FreeTemp(rl_src.reg.GetHighReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001175}
1176
Mark Mendelle02d48f2014-01-15 11:19:23 -08001177void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1178 RegLocation rl_src2, Instruction::Code op,
1179 bool is_commutative) {
1180 // Is this really a 2 operand operation?
1181 switch (op) {
1182 case Instruction::ADD_LONG_2ADDR:
1183 case Instruction::SUB_LONG_2ADDR:
1184 case Instruction::AND_LONG_2ADDR:
1185 case Instruction::OR_LONG_2ADDR:
1186 case Instruction::XOR_LONG_2ADDR:
1187 GenLongArith(rl_dest, rl_src2, op);
1188 return;
1189 default:
1190 break;
1191 }
1192
1193 if (rl_dest.location == kLocPhysReg) {
1194 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1195
1196 // We are about to clobber the LHS, so it needs to be a temp.
1197 rl_result = ForceTempWide(rl_result);
1198
1199 // Perform the operation using the RHS.
1200 rl_src2 = UpdateLocWide(rl_src2);
1201 GenLongRegOrMemOp(rl_result, rl_src2, op);
1202
1203 // And now record that the result is in the temp.
1204 StoreFinalValueWide(rl_dest, rl_result);
1205 return;
1206 }
1207
1208 // It wasn't in registers, so it better be in memory.
1209 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1210 (rl_dest.location == kLocCompilerTemp));
1211 rl_src1 = UpdateLocWide(rl_src1);
1212 rl_src2 = UpdateLocWide(rl_src2);
1213
1214 // Get one of the source operands into temporary register.
1215 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001216 if (IsTemp(rl_src1.reg.GetReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001217 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1218 } else if (is_commutative) {
1219 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1220 // We need at least one of them to be a temporary.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001221 if (!(IsTemp(rl_src2.reg.GetReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001222 rl_src1 = ForceTempWide(rl_src1);
Yevgeny Rouban91b6ffa2014-03-07 14:35:44 +07001223 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1224 } else {
1225 GenLongRegOrMemOp(rl_src2, rl_src1, op);
1226 StoreFinalValueWide(rl_dest, rl_src2);
1227 return;
Mark Mendelle02d48f2014-01-15 11:19:23 -08001228 }
Mark Mendelle02d48f2014-01-15 11:19:23 -08001229 } else {
1230 // Need LHS to be the temp.
1231 rl_src1 = ForceTempWide(rl_src1);
1232 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1233 }
1234
1235 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001236}
1237
Mark Mendelle02d48f2014-01-15 11:19:23 -08001238void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001239 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001240 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1241}
1242
1243void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1244 RegLocation rl_src1, RegLocation rl_src2) {
1245 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1246}
1247
1248void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1249 RegLocation rl_src1, RegLocation rl_src2) {
1250 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1251}
1252
1253void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1254 RegLocation rl_src1, RegLocation rl_src2) {
1255 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1256}
1257
1258void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1259 RegLocation rl_src1, RegLocation rl_src2) {
1260 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001261}
1262
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001263void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001264 rl_src = LoadValueWide(rl_src, kCoreReg);
1265 RegLocation rl_result = ForceTempWide(rl_src);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001266 if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
1267 ((rl_dest.reg.GetReg() == rl_src.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001268 // The registers are the same, so we would clobber it before the use.
1269 int temp_reg = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001270 OpRegCopy(temp_reg, rl_result.reg.GetReg());
1271 rl_result.reg.SetHighReg(temp_reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001272 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001273 OpRegReg(kOpNeg, rl_result.reg.GetReg(), rl_result.reg.GetReg()); // rLow = -rLow
1274 OpRegImm(kOpAdc, rl_result.reg.GetHighReg(), 0); // rHigh = rHigh + CF
1275 OpRegReg(kOpNeg, rl_result.reg.GetHighReg(), rl_result.reg.GetHighReg()); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001276 StoreValueWide(rl_dest, rl_result);
1277}
1278
Ian Rogers468532e2013-08-05 10:56:33 -07001279void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001280 X86OpCode opcode = kX86Bkpt;
1281 switch (op) {
1282 case kOpCmp: opcode = kX86Cmp32RT; break;
1283 case kOpMov: opcode = kX86Mov32RT; break;
1284 default:
1285 LOG(FATAL) << "Bad opcode: " << op;
1286 break;
1287 }
Ian Rogers468532e2013-08-05 10:56:33 -07001288 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001289}
1290
1291/*
1292 * Generate array load
1293 */
1294void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001295 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001296 RegisterClass reg_class = oat_reg_class_by_size(size);
1297 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001298 RegLocation rl_result;
1299 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001300
Mark Mendell343adb52013-12-18 06:02:17 -08001301 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001302 if (size == kLong || size == kDouble) {
1303 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1304 } else {
1305 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1306 }
1307
Mark Mendell343adb52013-12-18 06:02:17 -08001308 bool constant_index = rl_index.is_const;
1309 int32_t constant_index_value = 0;
1310 if (!constant_index) {
1311 rl_index = LoadValue(rl_index, kCoreReg);
1312 } else {
1313 constant_index_value = mir_graph_->ConstantValue(rl_index);
1314 // If index is constant, just fold it into the data offset
1315 data_offset += constant_index_value << scale;
1316 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001317 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001318 }
1319
Brian Carlstrom7940e442013-07-12 13:46:57 -07001320 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001321 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001322
1323 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001324 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001325 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001326 constant_index_value, kThrowConstantArrayBounds);
1327 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001328 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001329 len_offset, kThrowArrayBounds);
1330 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001331 }
Mark Mendell343adb52013-12-18 06:02:17 -08001332 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001333 if ((size == kLong) || (size == kDouble)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001334 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_result.reg.GetReg(),
1335 rl_result.reg.GetHighReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001336 StoreValueWide(rl_dest, rl_result);
1337 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001338 LoadBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale,
1339 data_offset, rl_result.reg.GetReg(), INVALID_REG, size,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001340 INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001341 StoreValue(rl_dest, rl_result);
1342 }
1343}
1344
1345/*
1346 * Generate array store
1347 *
1348 */
1349void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001350 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001351 RegisterClass reg_class = oat_reg_class_by_size(size);
1352 int len_offset = mirror::Array::LengthOffset().Int32Value();
1353 int data_offset;
1354
1355 if (size == kLong || size == kDouble) {
1356 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1357 } else {
1358 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1359 }
1360
1361 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001362 bool constant_index = rl_index.is_const;
1363 int32_t constant_index_value = 0;
1364 if (!constant_index) {
1365 rl_index = LoadValue(rl_index, kCoreReg);
1366 } else {
1367 // If index is constant, just fold it into the data offset
1368 constant_index_value = mir_graph_->ConstantValue(rl_index);
1369 data_offset += constant_index_value << scale;
1370 // treat as non array below
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001371 rl_index.reg = RegStorage(RegStorage::k32BitSolo, INVALID_REG);
Mark Mendell343adb52013-12-18 06:02:17 -08001372 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001373
1374 /* null object? */
Dave Allisonb373e092014-02-20 16:06:36 -08001375 GenNullCheck(rl_array.reg.GetReg(), opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001376
1377 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001378 if (constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001379 GenMemImmedCheck(kCondLs, rl_array.reg.GetReg(), len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001380 constant_index_value, kThrowConstantArrayBounds);
1381 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001382 GenRegMemCheck(kCondUge, rl_index.reg.GetReg(), rl_array.reg.GetReg(),
Mark Mendell343adb52013-12-18 06:02:17 -08001383 len_offset, kThrowArrayBounds);
1384 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001385 }
1386 if ((size == kLong) || (size == kDouble)) {
1387 rl_src = LoadValueWide(rl_src, reg_class);
1388 } else {
1389 rl_src = LoadValue(rl_src, reg_class);
1390 }
1391 // If the src reg can't be byte accessed, move it to a temp first.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001392 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001393 int temp = AllocTemp();
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001394 OpRegCopy(temp, rl_src.reg.GetReg());
1395 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, temp,
Brian Carlstrom7940e442013-07-12 13:46:57 -07001396 INVALID_REG, size, INVALID_SREG);
1397 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001398 StoreBaseIndexedDisp(rl_array.reg.GetReg(), rl_index.reg.GetReg(), scale, data_offset, rl_src.reg.GetReg(),
1399 rl_src.wide ? rl_src.reg.GetHighReg() : INVALID_REG, size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001400 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001401 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001402 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001403 if (!constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001404 FreeTemp(rl_index.reg.GetReg());
Mark Mendell343adb52013-12-18 06:02:17 -08001405 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001406 MarkGCCard(rl_src.reg.GetReg(), rl_array.reg.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001407 }
1408}
1409
Mark Mendell4708dcd2014-01-22 09:05:18 -08001410RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1411 RegLocation rl_src, int shift_amount) {
1412 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1413 switch (opcode) {
1414 case Instruction::SHL_LONG:
1415 case Instruction::SHL_LONG_2ADDR:
1416 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1417 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001418 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1419 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001420 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001421 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetReg());
1422 FreeTemp(rl_src.reg.GetHighReg());
1423 NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
1424 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001425 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001426 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1427 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1428 NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetReg(), shift_amount);
1429 NewLIR2(kX86Sal32RI, rl_result.reg.GetReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001430 }
1431 break;
1432 case Instruction::SHR_LONG:
1433 case Instruction::SHR_LONG_2ADDR:
1434 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001435 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1436 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1437 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001438 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001439 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1440 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1441 NewLIR2(kX86Sar32RI, rl_result.reg.GetReg(), shift_amount - 32);
1442 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001443 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001444 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1445 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1446 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1447 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001448 }
1449 break;
1450 case Instruction::USHR_LONG:
1451 case Instruction::USHR_LONG_2ADDR:
1452 if (shift_amount == 32) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001453 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1454 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001455 } else if (shift_amount > 31) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001456 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetHighReg());
1457 NewLIR2(kX86Shr32RI, rl_result.reg.GetReg(), shift_amount - 32);
1458 LoadConstant(rl_result.reg.GetHighReg(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001459 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001460 OpRegCopy(rl_result.reg.GetReg(), rl_src.reg.GetReg());
1461 OpRegCopy(rl_result.reg.GetHighReg(), rl_src.reg.GetHighReg());
1462 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetReg(), rl_result.reg.GetHighReg(), shift_amount);
1463 NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001464 }
1465 break;
1466 default:
1467 LOG(FATAL) << "Unexpected case";
1468 }
1469 return rl_result;
1470}
1471
Brian Carlstrom7940e442013-07-12 13:46:57 -07001472void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001473 RegLocation rl_src, RegLocation rl_shift) {
1474 // Per spec, we only care about low 6 bits of shift amount.
1475 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1476 if (shift_amount == 0) {
1477 rl_src = LoadValueWide(rl_src, kCoreReg);
1478 StoreValueWide(rl_dest, rl_src);
1479 return;
1480 } else if (shift_amount == 1 &&
1481 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1482 // Need to handle this here to avoid calling StoreValueWide twice.
1483 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1484 return;
1485 }
1486 if (BadOverlap(rl_src, rl_dest)) {
1487 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1488 return;
1489 }
1490 rl_src = LoadValueWide(rl_src, kCoreReg);
1491 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1492 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001493}
1494
1495void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001496 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001497 switch (opcode) {
1498 case Instruction::ADD_LONG:
1499 case Instruction::AND_LONG:
1500 case Instruction::OR_LONG:
1501 case Instruction::XOR_LONG:
1502 if (rl_src2.is_const) {
1503 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1504 } else {
1505 DCHECK(rl_src1.is_const);
1506 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1507 }
1508 break;
1509 case Instruction::SUB_LONG:
1510 case Instruction::SUB_LONG_2ADDR:
1511 if (rl_src2.is_const) {
1512 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1513 } else {
1514 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1515 }
1516 break;
1517 case Instruction::ADD_LONG_2ADDR:
1518 case Instruction::OR_LONG_2ADDR:
1519 case Instruction::XOR_LONG_2ADDR:
1520 case Instruction::AND_LONG_2ADDR:
1521 if (rl_src2.is_const) {
1522 GenLongImm(rl_dest, rl_src2, opcode);
1523 } else {
1524 DCHECK(rl_src1.is_const);
1525 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1526 }
1527 break;
1528 default:
1529 // Default - bail to non-const handler.
1530 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1531 break;
1532 }
1533}
1534
1535bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1536 switch (op) {
1537 case Instruction::AND_LONG_2ADDR:
1538 case Instruction::AND_LONG:
1539 return value == -1;
1540 case Instruction::OR_LONG:
1541 case Instruction::OR_LONG_2ADDR:
1542 case Instruction::XOR_LONG:
1543 case Instruction::XOR_LONG_2ADDR:
1544 return value == 0;
1545 default:
1546 return false;
1547 }
1548}
1549
1550X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1551 bool is_high_op) {
1552 bool rhs_in_mem = rhs.location != kLocPhysReg;
1553 bool dest_in_mem = dest.location != kLocPhysReg;
1554 DCHECK(!rhs_in_mem || !dest_in_mem);
1555 switch (op) {
1556 case Instruction::ADD_LONG:
1557 case Instruction::ADD_LONG_2ADDR:
1558 if (dest_in_mem) {
1559 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1560 } else if (rhs_in_mem) {
1561 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1562 }
1563 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1564 case Instruction::SUB_LONG:
1565 case Instruction::SUB_LONG_2ADDR:
1566 if (dest_in_mem) {
1567 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1568 } else if (rhs_in_mem) {
1569 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1570 }
1571 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1572 case Instruction::AND_LONG_2ADDR:
1573 case Instruction::AND_LONG:
1574 if (dest_in_mem) {
1575 return kX86And32MR;
1576 }
1577 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1578 case Instruction::OR_LONG:
1579 case Instruction::OR_LONG_2ADDR:
1580 if (dest_in_mem) {
1581 return kX86Or32MR;
1582 }
1583 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1584 case Instruction::XOR_LONG:
1585 case Instruction::XOR_LONG_2ADDR:
1586 if (dest_in_mem) {
1587 return kX86Xor32MR;
1588 }
1589 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1590 default:
1591 LOG(FATAL) << "Unexpected opcode: " << op;
1592 return kX86Add32RR;
1593 }
1594}
1595
1596X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1597 int32_t value) {
1598 bool in_mem = loc.location != kLocPhysReg;
1599 bool byte_imm = IS_SIMM8(value);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001600 DCHECK(in_mem || !IsFpReg(loc.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001601 switch (op) {
1602 case Instruction::ADD_LONG:
1603 case Instruction::ADD_LONG_2ADDR:
1604 if (byte_imm) {
1605 if (in_mem) {
1606 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1607 }
1608 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1609 }
1610 if (in_mem) {
1611 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1612 }
1613 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1614 case Instruction::SUB_LONG:
1615 case Instruction::SUB_LONG_2ADDR:
1616 if (byte_imm) {
1617 if (in_mem) {
1618 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1619 }
1620 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1621 }
1622 if (in_mem) {
1623 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1624 }
1625 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1626 case Instruction::AND_LONG_2ADDR:
1627 case Instruction::AND_LONG:
1628 if (byte_imm) {
1629 return in_mem ? kX86And32MI8 : kX86And32RI8;
1630 }
1631 return in_mem ? kX86And32MI : kX86And32RI;
1632 case Instruction::OR_LONG:
1633 case Instruction::OR_LONG_2ADDR:
1634 if (byte_imm) {
1635 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1636 }
1637 return in_mem ? kX86Or32MI : kX86Or32RI;
1638 case Instruction::XOR_LONG:
1639 case Instruction::XOR_LONG_2ADDR:
1640 if (byte_imm) {
1641 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1642 }
1643 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1644 default:
1645 LOG(FATAL) << "Unexpected opcode: " << op;
1646 return kX86Add32MI;
1647 }
1648}
1649
1650void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1651 DCHECK(rl_src.is_const);
1652 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1653 int32_t val_lo = Low32Bits(val);
1654 int32_t val_hi = High32Bits(val);
1655 rl_dest = UpdateLocWide(rl_dest);
1656
1657 // Can we just do this into memory?
1658 if ((rl_dest.location == kLocDalvikFrame) ||
1659 (rl_dest.location == kLocCompilerTemp)) {
1660 int rBase = TargetReg(kSp);
1661 int displacement = SRegOffset(rl_dest.s_reg_low);
1662
1663 if (!IsNoOp(op, val_lo)) {
1664 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
1665 LIR *lir = NewLIR3(x86op, rBase, displacement + LOWORD_OFFSET, val_lo);
1666 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1667 false /* is_load */, true /* is64bit */);
1668 }
1669 if (!IsNoOp(op, val_hi)) {
1670 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
1671 LIR *lir = NewLIR3(x86op, rBase, displacement + HIWORD_OFFSET, val_hi);
1672 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1673 false /* is_load */, true /* is64bit */);
1674 }
1675 return;
1676 }
1677
1678 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1679 DCHECK_EQ(rl_result.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001680 DCHECK(!IsFpReg(rl_result.reg.GetReg()));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001681
1682 if (!IsNoOp(op, val_lo)) {
1683 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001684 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001685 }
1686 if (!IsNoOp(op, val_hi)) {
1687 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001688 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001689 }
1690 StoreValueWide(rl_dest, rl_result);
1691}
1692
1693void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1694 RegLocation rl_src2, Instruction::Code op) {
1695 DCHECK(rl_src2.is_const);
1696 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1697 int32_t val_lo = Low32Bits(val);
1698 int32_t val_hi = High32Bits(val);
1699 rl_dest = UpdateLocWide(rl_dest);
1700 rl_src1 = UpdateLocWide(rl_src1);
1701
1702 // Can we do this directly into the destination registers?
1703 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001704 rl_dest.reg.GetReg() == rl_src1.reg.GetReg() && rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1705 !IsFpReg(rl_dest.reg.GetReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001706 if (!IsNoOp(op, val_lo)) {
1707 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001708 NewLIR2(x86op, rl_dest.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001709 }
1710 if (!IsNoOp(op, val_hi)) {
1711 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001712 NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001713 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001714
1715 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001716 return;
1717 }
1718
1719 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1720 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1721
1722 // We need the values to be in a temporary
1723 RegLocation rl_result = ForceTempWide(rl_src1);
1724 if (!IsNoOp(op, val_lo)) {
1725 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001726 NewLIR2(x86op, rl_result.reg.GetReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001727 }
1728 if (!IsNoOp(op, val_hi)) {
1729 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001730 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001731 }
1732
1733 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001734}
1735
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001736// For final classes there are no sub-classes to check and so we can answer the instance-of
1737// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1738void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1739 RegLocation rl_dest, RegLocation rl_src) {
1740 RegLocation object = LoadValue(rl_src, kCoreReg);
1741 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001742 int result_reg = rl_result.reg.GetReg();
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001743
1744 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001745 if (result_reg == object.reg.GetReg() || result_reg >= 4) {
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001746 result_reg = AllocTypedTemp(false, kCoreReg);
1747 DCHECK_LT(result_reg, 4);
1748 }
1749
1750 // Assume that there is no match.
1751 LoadConstant(result_reg, 0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001752 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg.GetReg(), 0, NULL);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001753
1754 int check_class = AllocTypedTemp(false, kCoreReg);
1755
1756 // If Method* is already in a register, we can save a copy.
1757 RegLocation rl_method = mir_graph_->GetMethodLoc();
1758 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1759 (sizeof(mirror::Class*) * type_idx);
1760
1761 if (rl_method.location == kLocPhysReg) {
1762 if (use_declaring_class) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001763 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001764 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1765 check_class);
1766 } else {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001767 LoadWordDisp(rl_method.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001768 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1769 check_class);
1770 LoadWordDisp(check_class, offset_of_type, check_class);
1771 }
1772 } else {
1773 LoadCurrMethodDirect(check_class);
1774 if (use_declaring_class) {
1775 LoadWordDisp(check_class,
1776 mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1777 check_class);
1778 } else {
1779 LoadWordDisp(check_class,
1780 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1781 check_class);
1782 LoadWordDisp(check_class, offset_of_type, check_class);
1783 }
1784 }
1785
1786 // Compare the computed class to the class in the object.
1787 DCHECK_EQ(object.location, kLocPhysReg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001788 OpRegMem(kOpCmp, check_class, object.reg.GetReg(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001789 mirror::Object::ClassOffset().Int32Value());
1790
1791 // Set the low byte of the result to 0 or 1 from the compare condition code.
1792 NewLIR2(kX86Set8R, result_reg, kX86CondEq);
1793
1794 LIR* target = NewLIR0(kPseudoTargetLabel);
1795 null_branchover->target = target;
1796 FreeTemp(check_class);
1797 if (IsTemp(result_reg)) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001798 OpRegCopy(rl_result.reg.GetReg(), result_reg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001799 FreeTemp(result_reg);
1800 }
1801 StoreValue(rl_dest, rl_result);
1802}
1803
Mark Mendell6607d972014-02-10 06:54:18 -08001804void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1805 bool type_known_abstract, bool use_declaring_class,
1806 bool can_assume_type_is_in_dex_cache,
1807 uint32_t type_idx, RegLocation rl_dest,
1808 RegLocation rl_src) {
1809 FlushAllRegs();
1810 // May generate a call - use explicit registers.
1811 LockCallTemps();
1812 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
1813 int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
1814 // Reference must end up in kArg0.
1815 if (needs_access_check) {
1816 // Check we have access to type_idx and if not throw IllegalAccessError,
1817 // Caller function returns Class* in kArg0.
1818 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess),
1819 type_idx, true);
1820 OpRegCopy(class_reg, TargetReg(kRet0));
1821 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1822 } else if (use_declaring_class) {
1823 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1824 LoadWordDisp(TargetReg(kArg1),
1825 mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg);
1826 } else {
1827 // Load dex cache entry into class_reg (kArg2).
1828 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1829 LoadWordDisp(TargetReg(kArg1),
1830 mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
1831 int32_t offset_of_type =
1832 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1833 * type_idx);
1834 LoadWordDisp(class_reg, offset_of_type, class_reg);
1835 if (!can_assume_type_is_in_dex_cache) {
1836 // Need to test presence of type in dex cache at runtime.
1837 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1838 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
1839 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true);
1840 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1841 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1842 // Rejoin code paths
1843 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1844 hop_branch->target = hop_target;
1845 }
1846 }
1847 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1848 RegLocation rl_result = GetReturn(false);
1849
1850 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001851 DCHECK_LT(rl_result.reg.GetReg(), 4);
Mark Mendell6607d972014-02-10 06:54:18 -08001852
1853 // Is the class NULL?
1854 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1855
1856 /* Load object->klass_. */
1857 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1858 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1859 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1860 LIR* branchover = nullptr;
1861 if (type_known_final) {
1862 // Ensure top 3 bytes of result are 0.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001863 LoadConstant(rl_result.reg.GetReg(), 0);
Mark Mendell6607d972014-02-10 06:54:18 -08001864 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1865 // Set the low byte of the result to 0 or 1 from the compare condition code.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001866 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
Mark Mendell6607d972014-02-10 06:54:18 -08001867 } else {
1868 if (!type_known_abstract) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001869 LoadConstant(rl_result.reg.GetReg(), 1); // Assume result succeeds.
Mark Mendell6607d972014-02-10 06:54:18 -08001870 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1871 }
1872 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
1873 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial));
1874 }
1875 // TODO: only clobber when type isn't final?
1876 ClobberCallerSave();
1877 /* Branch targets here. */
1878 LIR* target = NewLIR0(kPseudoTargetLabel);
1879 StoreValue(rl_dest, rl_result);
1880 branch1->target = target;
1881 if (branchover != nullptr) {
1882 branchover->target = target;
1883 }
1884}
1885
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001886void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1887 RegLocation rl_lhs, RegLocation rl_rhs) {
1888 OpKind op = kOpBkpt;
1889 bool is_div_rem = false;
1890 bool unary = false;
1891 bool shift_op = false;
1892 bool is_two_addr = false;
1893 RegLocation rl_result;
1894 switch (opcode) {
1895 case Instruction::NEG_INT:
1896 op = kOpNeg;
1897 unary = true;
1898 break;
1899 case Instruction::NOT_INT:
1900 op = kOpMvn;
1901 unary = true;
1902 break;
1903 case Instruction::ADD_INT_2ADDR:
1904 is_two_addr = true;
1905 // Fallthrough
1906 case Instruction::ADD_INT:
1907 op = kOpAdd;
1908 break;
1909 case Instruction::SUB_INT_2ADDR:
1910 is_two_addr = true;
1911 // Fallthrough
1912 case Instruction::SUB_INT:
1913 op = kOpSub;
1914 break;
1915 case Instruction::MUL_INT_2ADDR:
1916 is_two_addr = true;
1917 // Fallthrough
1918 case Instruction::MUL_INT:
1919 op = kOpMul;
1920 break;
1921 case Instruction::DIV_INT_2ADDR:
1922 is_two_addr = true;
1923 // Fallthrough
1924 case Instruction::DIV_INT:
1925 op = kOpDiv;
1926 is_div_rem = true;
1927 break;
1928 /* NOTE: returns in kArg1 */
1929 case Instruction::REM_INT_2ADDR:
1930 is_two_addr = true;
1931 // Fallthrough
1932 case Instruction::REM_INT:
1933 op = kOpRem;
1934 is_div_rem = true;
1935 break;
1936 case Instruction::AND_INT_2ADDR:
1937 is_two_addr = true;
1938 // Fallthrough
1939 case Instruction::AND_INT:
1940 op = kOpAnd;
1941 break;
1942 case Instruction::OR_INT_2ADDR:
1943 is_two_addr = true;
1944 // Fallthrough
1945 case Instruction::OR_INT:
1946 op = kOpOr;
1947 break;
1948 case Instruction::XOR_INT_2ADDR:
1949 is_two_addr = true;
1950 // Fallthrough
1951 case Instruction::XOR_INT:
1952 op = kOpXor;
1953 break;
1954 case Instruction::SHL_INT_2ADDR:
1955 is_two_addr = true;
1956 // Fallthrough
1957 case Instruction::SHL_INT:
1958 shift_op = true;
1959 op = kOpLsl;
1960 break;
1961 case Instruction::SHR_INT_2ADDR:
1962 is_two_addr = true;
1963 // Fallthrough
1964 case Instruction::SHR_INT:
1965 shift_op = true;
1966 op = kOpAsr;
1967 break;
1968 case Instruction::USHR_INT_2ADDR:
1969 is_two_addr = true;
1970 // Fallthrough
1971 case Instruction::USHR_INT:
1972 shift_op = true;
1973 op = kOpLsr;
1974 break;
1975 default:
1976 LOG(FATAL) << "Invalid word arith op: " << opcode;
1977 }
1978
1979 // Can we convert to a two address instruction?
1980 if (!is_two_addr &&
1981 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
1982 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
1983 is_two_addr = true;
1984 }
1985
1986 // Get the div/rem stuff out of the way.
1987 if (is_div_rem) {
1988 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
1989 StoreValue(rl_dest, rl_result);
1990 return;
1991 }
1992
1993 if (unary) {
1994 rl_lhs = LoadValue(rl_lhs, kCoreReg);
1995 rl_result = UpdateLoc(rl_dest);
1996 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001997 OpRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001998 } else {
1999 if (shift_op) {
2000 // X86 doesn't require masking and must use ECX.
2001 int t_reg = TargetReg(kCount); // rCX
2002 LoadValueDirectFixed(rl_rhs, t_reg);
2003 if (is_two_addr) {
2004 // Can we do this directly into memory?
2005 rl_result = UpdateLoc(rl_dest);
2006 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2007 if (rl_result.location != kLocPhysReg) {
2008 // Okay, we can do this into memory
2009 OpMemReg(op, rl_result, t_reg);
2010 FreeTemp(t_reg);
2011 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002012 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002013 // Can do this directly into the result register
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002014 OpRegReg(op, rl_result.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002015 FreeTemp(t_reg);
2016 StoreFinalValue(rl_dest, rl_result);
2017 return;
2018 }
2019 }
2020 // Three address form, or we can't do directly.
2021 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2022 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002023 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002024 FreeTemp(t_reg);
2025 } else {
2026 // Multiply is 3 operand only (sort of).
2027 if (is_two_addr && op != kOpMul) {
2028 // Can we do this directly into memory?
2029 rl_result = UpdateLoc(rl_dest);
2030 if (rl_result.location == kLocPhysReg) {
2031 // Can we do this from memory directly?
2032 rl_rhs = UpdateLoc(rl_rhs);
2033 if (rl_rhs.location != kLocPhysReg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002034 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002035 StoreFinalValue(rl_dest, rl_result);
2036 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002037 } else if (!IsFpReg(rl_rhs.reg.GetReg())) {
2038 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002039 StoreFinalValue(rl_dest, rl_result);
2040 return;
2041 }
2042 }
2043 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2044 if (rl_result.location != kLocPhysReg) {
2045 // Okay, we can do this into memory.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002046 OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002047 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002048 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002049 // Can do this directly into the result register.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002050 OpRegReg(op, rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002051 StoreFinalValue(rl_dest, rl_result);
2052 return;
2053 } else {
2054 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2055 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002056 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002057 }
2058 } else {
2059 // Try to use reg/memory instructions.
2060 rl_lhs = UpdateLoc(rl_lhs);
2061 rl_rhs = UpdateLoc(rl_rhs);
2062 // We can't optimize with FP registers.
2063 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2064 // Something is difficult, so fall back to the standard case.
2065 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2066 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2067 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002068 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002069 } else {
2070 // We can optimize by moving to result and using memory operands.
2071 if (rl_rhs.location != kLocPhysReg) {
2072 // Force LHS into result.
Serguei Katkov66da1362014-03-14 13:33:33 +07002073 // We should be careful with order here
2074 // If rl_dest and rl_lhs points to the same VR we should load first
2075 // If the are different we should find a register first for dest
2076 if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2077 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2078 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2079 } else {
2080 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2081 LoadValueDirect(rl_lhs, rl_result.reg.GetReg());
2082 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002083 OpRegMem(op, rl_result.reg.GetReg(), rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002084 } else if (rl_lhs.location != kLocPhysReg) {
2085 // RHS is in a register; LHS is in memory.
2086 if (op != kOpSub) {
2087 // Force RHS into result and operate on memory.
2088 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002089 OpRegCopy(rl_result.reg.GetReg(), rl_rhs.reg.GetReg());
2090 OpRegMem(op, rl_result.reg.GetReg(), rl_lhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002091 } else {
2092 // Subtraction isn't commutative.
2093 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2094 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2095 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002096 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002097 }
2098 } else {
2099 // Both are in registers.
2100 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2101 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2102 rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002103 OpRegRegReg(op, rl_result.reg.GetReg(), rl_lhs.reg.GetReg(), rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002104 }
2105 }
2106 }
2107 }
2108 }
2109 StoreValue(rl_dest, rl_result);
2110}
2111
2112bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2113 // If we have non-core registers, then we can't do good things.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002114 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002115 return false;
2116 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002117 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002118 return false;
2119 }
2120
2121 // Everything will be fine :-).
2122 return true;
2123}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002124} // namespace art