blob: bbcedc3218793e36ae6b3437721e15c1cdf62434 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the X86 ISA */
18
19#include "codegen_x86.h"
20#include "dex/quick/mir_to_lir-inl.h"
21#include "mirror/array.h"
22#include "x86_lir.h"
23
24namespace art {
25
26/*
27 * Perform register memory operation.
28 */
buzbee2700f7e2014-03-07 09:46:20 -080029LIR* X86Mir2Lir::GenRegMemCheck(ConditionCode c_code, RegStorage reg1, RegStorage base,
30 int offset, ThrowKind kind) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070031 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
buzbee2700f7e2014-03-07 09:46:20 -080032 current_dalvik_offset_, reg1.GetReg(), base.GetReg(), offset);
Brian Carlstrom7940e442013-07-12 13:46:57 -070033 OpRegMem(kOpCmp, reg1, base, offset);
34 LIR* branch = OpCondBranch(c_code, tgt);
35 // Remember branch target - will process later
36 throw_launchpads_.Insert(tgt);
37 return branch;
38}
39
40/*
Mark Mendell343adb52013-12-18 06:02:17 -080041 * Perform a compare of memory to immediate value
42 */
buzbee2700f7e2014-03-07 09:46:20 -080043LIR* X86Mir2Lir::GenMemImmedCheck(ConditionCode c_code, RegStorage base, int offset,
44 int check_value, ThrowKind kind) {
Mark Mendell343adb52013-12-18 06:02:17 -080045 LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind,
buzbee2700f7e2014-03-07 09:46:20 -080046 current_dalvik_offset_, base.GetReg(), check_value, 0);
47 NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base.GetReg(), offset, check_value);
Mark Mendell343adb52013-12-18 06:02:17 -080048 LIR* branch = OpCondBranch(c_code, tgt);
49 // Remember branch target - will process later
50 throw_launchpads_.Insert(tgt);
51 return branch;
52}
53
54/*
Brian Carlstrom7940e442013-07-12 13:46:57 -070055 * Compare two 64-bit values
56 * x = y return 0
57 * x < y return -1
58 * x > y return 1
59 */
60void X86Mir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -070061 RegLocation rl_src2) {
Brian Carlstrom7940e442013-07-12 13:46:57 -070062 FlushAllRegs();
63 LockCallTemps(); // Prepare for explicit register usage
buzbee2700f7e2014-03-07 09:46:20 -080064 RegStorage r_tmp1(RegStorage::k64BitPair, r0, r1);
65 RegStorage r_tmp2(RegStorage::k64BitPair, r2, r3);
66 LoadValueDirectWideFixed(rl_src1, r_tmp1);
67 LoadValueDirectWideFixed(rl_src2, r_tmp2);
Brian Carlstrom7940e442013-07-12 13:46:57 -070068 // Compute (r1:r0) = (r1:r0) - (r3:r2)
buzbee2700f7e2014-03-07 09:46:20 -080069 OpRegReg(kOpSub, rs_r0, rs_r2); // r0 = r0 - r2
70 OpRegReg(kOpSbc, rs_r1, rs_r3); // r1 = r1 - r3 - CF
Brian Carlstrom7940e442013-07-12 13:46:57 -070071 NewLIR2(kX86Set8R, r2, kX86CondL); // r2 = (r1:r0) < (r3:r2) ? 1 : 0
72 NewLIR2(kX86Movzx8RR, r2, r2);
buzbee2700f7e2014-03-07 09:46:20 -080073 OpReg(kOpNeg, rs_r2); // r2 = -r2
74 OpRegReg(kOpOr, rs_r0, rs_r1); // r0 = high | low - sets ZF
Brian Carlstrom7940e442013-07-12 13:46:57 -070075 NewLIR2(kX86Set8R, r0, kX86CondNz); // r0 = (r1:r0) != (r3:r2) ? 1 : 0
76 NewLIR2(kX86Movzx8RR, r0, r0);
buzbee2700f7e2014-03-07 09:46:20 -080077 OpRegReg(kOpOr, rs_r0, rs_r2); // r0 = r0 | r2
Brian Carlstrom7940e442013-07-12 13:46:57 -070078 RegLocation rl_result = LocCReturn();
79 StoreValue(rl_dest, rl_result);
80}
81
82X86ConditionCode X86ConditionEncoding(ConditionCode cond) {
83 switch (cond) {
84 case kCondEq: return kX86CondEq;
85 case kCondNe: return kX86CondNe;
86 case kCondCs: return kX86CondC;
87 case kCondCc: return kX86CondNc;
Vladimir Marko58af1f92013-12-19 13:31:15 +000088 case kCondUlt: return kX86CondC;
89 case kCondUge: return kX86CondNc;
Brian Carlstrom7940e442013-07-12 13:46:57 -070090 case kCondMi: return kX86CondS;
91 case kCondPl: return kX86CondNs;
92 case kCondVs: return kX86CondO;
93 case kCondVc: return kX86CondNo;
94 case kCondHi: return kX86CondA;
95 case kCondLs: return kX86CondBe;
96 case kCondGe: return kX86CondGe;
97 case kCondLt: return kX86CondL;
98 case kCondGt: return kX86CondG;
99 case kCondLe: return kX86CondLe;
100 case kCondAl:
101 case kCondNv: LOG(FATAL) << "Should not reach here";
102 }
103 return kX86CondO;
104}
105
buzbee2700f7e2014-03-07 09:46:20 -0800106LIR* X86Mir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) {
107 NewLIR2(kX86Cmp32RR, src1.GetReg(), src2.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700108 X86ConditionCode cc = X86ConditionEncoding(cond);
109 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ ,
110 cc);
111 branch->target = target;
112 return branch;
113}
114
buzbee2700f7e2014-03-07 09:46:20 -0800115LIR* X86Mir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700116 int check_value, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700117 if ((check_value == 0) && (cond == kCondEq || cond == kCondNe)) {
118 // TODO: when check_value == 0 and reg is rCX, use the jcxz/nz opcode
buzbee2700f7e2014-03-07 09:46:20 -0800119 NewLIR2(kX86Test32RR, reg.GetReg(), reg.GetReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700120 } else {
buzbee2700f7e2014-03-07 09:46:20 -0800121 NewLIR2(IS_SIMM8(check_value) ? kX86Cmp32RI8 : kX86Cmp32RI, reg.GetReg(), check_value);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700122 }
123 X86ConditionCode cc = X86ConditionEncoding(cond);
124 LIR* branch = NewLIR2(kX86Jcc8, 0 /* lir operand for Jcc offset */ , cc);
125 branch->target = target;
126 return branch;
127}
128
buzbee2700f7e2014-03-07 09:46:20 -0800129LIR* X86Mir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) {
130 // If src or dest is a pair, we'll be using low reg.
131 if (r_dest.IsPair()) {
132 r_dest = r_dest.GetLow();
133 }
134 if (r_src.IsPair()) {
135 r_src = r_src.GetLow();
136 }
137 if (X86_FPREG(r_dest.GetReg()) || X86_FPREG(r_src.GetReg()))
Brian Carlstrom7940e442013-07-12 13:46:57 -0700138 return OpFpRegCopy(r_dest, r_src);
139 LIR* res = RawLIR(current_dalvik_offset_, kX86Mov32RR,
buzbee2700f7e2014-03-07 09:46:20 -0800140 r_dest.GetReg(), r_src.GetReg());
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800141 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700142 res->flags.is_nop = true;
143 }
144 return res;
145}
146
buzbee2700f7e2014-03-07 09:46:20 -0800147LIR* X86Mir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700148 LIR *res = OpRegCopyNoInsert(r_dest, r_src);
149 AppendLIR(res);
150 return res;
151}
152
buzbee2700f7e2014-03-07 09:46:20 -0800153void X86Mir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) {
154 // FIXME: handle k64BitSolo when we start using them.
155 DCHECK(r_dest.IsPair());
156 DCHECK(r_src.IsPair());
157 bool dest_fp = X86_FPREG(r_dest.GetLowReg());
158 bool src_fp = X86_FPREG(r_src.GetLowReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700159 if (dest_fp) {
160 if (src_fp) {
buzbee2700f7e2014-03-07 09:46:20 -0800161 // TODO: we ought to handle this case here - reserve OpRegCopy for 32-bit copies.
162 OpRegCopy(RegStorage::Solo64(S2d(r_dest.GetLowReg(), r_dest.GetHighReg())),
163 RegStorage::Solo64(S2d(r_src.GetLowReg(), r_src.GetHighReg())));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700164 } else {
165 // TODO: Prevent this from happening in the code. The result is often
166 // unused or could have been loaded more easily from memory.
buzbee2700f7e2014-03-07 09:46:20 -0800167 NewLIR2(kX86MovdxrRR, r_dest.GetLowReg(), r_src.GetLowReg());
168 RegStorage r_tmp = AllocTempDouble();
169 NewLIR2(kX86MovdxrRR, r_tmp.GetLowReg(), r_src.GetHighReg());
170 NewLIR2(kX86PunpckldqRR, r_dest.GetLowReg(), r_tmp.GetLowReg());
171 FreeTemp(r_tmp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700172 }
173 } else {
174 if (src_fp) {
buzbee2700f7e2014-03-07 09:46:20 -0800175 NewLIR2(kX86MovdrxRR, r_dest.GetLowReg(), r_src.GetLowReg());
176 NewLIR2(kX86PsrlqRI, r_src.GetLowReg(), 32);
177 NewLIR2(kX86MovdrxRR, r_dest.GetHighReg(), r_src.GetLowReg());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700178 } else {
179 // Handle overlap
buzbee2700f7e2014-03-07 09:46:20 -0800180 if (r_src.GetHighReg() == r_dest.GetLowReg() && r_src.GetLowReg() == r_dest.GetHighReg()) {
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800181 // Deal with cycles.
buzbee2700f7e2014-03-07 09:46:20 -0800182 RegStorage temp_reg = AllocTemp();
183 OpRegCopy(temp_reg, r_dest.GetHigh());
184 OpRegCopy(r_dest.GetHigh(), r_dest.GetLow());
185 OpRegCopy(r_dest.GetLow(), temp_reg);
Razvan A Lupusoru3bc01742014-02-06 13:18:43 -0800186 FreeTemp(temp_reg);
buzbee2700f7e2014-03-07 09:46:20 -0800187 } else if (r_src.GetHighReg() == r_dest.GetLowReg()) {
188 OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
189 OpRegCopy(r_dest.GetLow(), r_src.GetLow());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700190 } else {
buzbee2700f7e2014-03-07 09:46:20 -0800191 OpRegCopy(r_dest.GetLow(), r_src.GetLow());
192 OpRegCopy(r_dest.GetHigh(), r_src.GetHigh());
Brian Carlstrom7940e442013-07-12 13:46:57 -0700193 }
194 }
195 }
196}
197
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700198void X86Mir2Lir::GenSelect(BasicBlock* bb, MIR* mir) {
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800199 RegLocation rl_result;
200 RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
201 RegLocation rl_dest = mir_graph_->GetDest(mir);
202 rl_src = LoadValue(rl_src, kCoreReg);
Vladimir Markoa1a70742014-03-03 10:28:05 +0000203 ConditionCode ccode = mir->meta.ccode;
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800204
205 // The kMirOpSelect has two variants, one for constants and one for moves.
206 const bool is_constant_case = (mir->ssa_rep->num_uses == 1);
207
208 if (is_constant_case) {
209 int true_val = mir->dalvikInsn.vB;
210 int false_val = mir->dalvikInsn.vC;
211 rl_result = EvalLoc(rl_dest, kCoreReg, true);
212
213 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000214 * For ccode == kCondEq:
215 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800216 * 1) When the true case is zero and result_reg is not same as src_reg:
217 * xor result_reg, result_reg
218 * cmp $0, src_reg
219 * mov t1, $false_case
220 * cmovnz result_reg, t1
221 * 2) When the false case is zero and result_reg is not same as src_reg:
222 * xor result_reg, result_reg
223 * cmp $0, src_reg
224 * mov t1, $true_case
225 * cmovz result_reg, t1
226 * 3) All other cases (we do compare first to set eflags):
227 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000228 * mov result_reg, $false_case
229 * mov t1, $true_case
230 * cmovz result_reg, t1
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800231 */
buzbee2700f7e2014-03-07 09:46:20 -0800232 const bool result_reg_same_as_src =
233 (rl_src.location == kLocPhysReg && rl_src.reg.GetReg() == rl_result.reg.GetReg());
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800234 const bool true_zero_case = (true_val == 0 && false_val != 0 && !result_reg_same_as_src);
235 const bool false_zero_case = (false_val == 0 && true_val != 0 && !result_reg_same_as_src);
236 const bool catch_all_case = !(true_zero_case || false_zero_case);
237
238 if (true_zero_case || false_zero_case) {
buzbee2700f7e2014-03-07 09:46:20 -0800239 OpRegReg(kOpXor, rl_result.reg, rl_result.reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800240 }
241
242 if (true_zero_case || false_zero_case || catch_all_case) {
buzbee2700f7e2014-03-07 09:46:20 -0800243 OpRegImm(kOpCmp, rl_src.reg, 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800244 }
245
246 if (catch_all_case) {
buzbee2700f7e2014-03-07 09:46:20 -0800247 OpRegImm(kOpMov, rl_result.reg, false_val);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800248 }
249
250 if (true_zero_case || false_zero_case || catch_all_case) {
Vladimir Markoa1a70742014-03-03 10:28:05 +0000251 ConditionCode cc = true_zero_case ? NegateComparison(ccode) : ccode;
252 int immediateForTemp = true_zero_case ? false_val : true_val;
buzbee2700f7e2014-03-07 09:46:20 -0800253 RegStorage temp1_reg = AllocTemp();
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800254 OpRegImm(kOpMov, temp1_reg, immediateForTemp);
255
buzbee2700f7e2014-03-07 09:46:20 -0800256 OpCondRegReg(kOpCmov, cc, rl_result.reg, temp1_reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800257
258 FreeTemp(temp1_reg);
259 }
260 } else {
261 RegLocation rl_true = mir_graph_->GetSrc(mir, 1);
262 RegLocation rl_false = mir_graph_->GetSrc(mir, 2);
263 rl_true = LoadValue(rl_true, kCoreReg);
264 rl_false = LoadValue(rl_false, kCoreReg);
265 rl_result = EvalLoc(rl_dest, kCoreReg, true);
266
267 /*
Vladimir Markoa1a70742014-03-03 10:28:05 +0000268 * For ccode == kCondEq:
269 *
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800270 * 1) When true case is already in place:
271 * cmp $0, src_reg
272 * cmovnz result_reg, false_reg
273 * 2) When false case is already in place:
274 * cmp $0, src_reg
275 * cmovz result_reg, true_reg
276 * 3) When neither cases are in place:
277 * cmp $0, src_reg
Vladimir Markoa1a70742014-03-03 10:28:05 +0000278 * mov result_reg, false_reg
279 * cmovz result_reg, true_reg
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800280 */
281
282 // kMirOpSelect is generated just for conditional cases when comparison is done with zero.
buzbee2700f7e2014-03-07 09:46:20 -0800283 OpRegImm(kOpCmp, rl_src.reg, 0);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800284
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000285 if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) {
buzbee2700f7e2014-03-07 09:46:20 -0800286 OpCondRegReg(kOpCmov, NegateComparison(ccode), rl_result.reg, rl_false.reg);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000287 } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) {
buzbee2700f7e2014-03-07 09:46:20 -0800288 OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800289 } else {
buzbee2700f7e2014-03-07 09:46:20 -0800290 OpRegCopy(rl_result.reg, rl_false.reg);
291 OpCondRegReg(kOpCmov, ccode, rl_result.reg, rl_true.reg);
Razvan A Lupusorue27b3bf2014-01-23 09:41:45 -0800292 }
293 }
294
295 StoreValue(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700296}
297
298void X86Mir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) {
buzbee0d829482013-10-11 15:24:55 -0700299 LIR* taken = &block_label_list_[bb->taken];
Brian Carlstrom7940e442013-07-12 13:46:57 -0700300 RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0);
301 RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2);
Vladimir Markoa8946072014-01-22 10:30:44 +0000302 ConditionCode ccode = mir->meta.ccode;
Mark Mendell412d4f82013-12-18 13:32:36 -0800303
304 if (rl_src1.is_const) {
305 std::swap(rl_src1, rl_src2);
306 ccode = FlipComparisonOrder(ccode);
307 }
308 if (rl_src2.is_const) {
309 // Do special compare/branch against simple const operand
310 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
311 GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode);
312 return;
313 }
314
Brian Carlstrom7940e442013-07-12 13:46:57 -0700315 FlushAllRegs();
316 LockCallTemps(); // Prepare for explicit register usage
buzbee2700f7e2014-03-07 09:46:20 -0800317 RegStorage r_tmp1(RegStorage::k64BitPair, r0, r1);
318 RegStorage r_tmp2(RegStorage::k64BitPair, r2, r3);
319 LoadValueDirectWideFixed(rl_src1, r_tmp1);
320 LoadValueDirectWideFixed(rl_src2, r_tmp2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700321 // Swap operands and condition code to prevent use of zero flag.
322 if (ccode == kCondLe || ccode == kCondGt) {
323 // Compute (r3:r2) = (r3:r2) - (r1:r0)
buzbee2700f7e2014-03-07 09:46:20 -0800324 OpRegReg(kOpSub, rs_r2, rs_r0); // r2 = r2 - r0
325 OpRegReg(kOpSbc, rs_r3, rs_r1); // r3 = r3 - r1 - CF
Brian Carlstrom7940e442013-07-12 13:46:57 -0700326 } else {
327 // Compute (r1:r0) = (r1:r0) - (r3:r2)
buzbee2700f7e2014-03-07 09:46:20 -0800328 OpRegReg(kOpSub, rs_r0, rs_r2); // r0 = r0 - r2
329 OpRegReg(kOpSbc, rs_r1, rs_r3); // r1 = r1 - r3 - CF
Brian Carlstrom7940e442013-07-12 13:46:57 -0700330 }
331 switch (ccode) {
332 case kCondEq:
333 case kCondNe:
buzbee2700f7e2014-03-07 09:46:20 -0800334 OpRegReg(kOpOr, rs_r0, rs_r1); // r0 = r0 | r1
Brian Carlstrom7940e442013-07-12 13:46:57 -0700335 break;
336 case kCondLe:
337 ccode = kCondGe;
338 break;
339 case kCondGt:
340 ccode = kCondLt;
341 break;
342 case kCondLt:
343 case kCondGe:
344 break;
345 default:
346 LOG(FATAL) << "Unexpected ccode: " << ccode;
347 }
348 OpCondBranch(ccode, taken);
349}
350
Mark Mendell412d4f82013-12-18 13:32:36 -0800351void X86Mir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1,
352 int64_t val, ConditionCode ccode) {
353 int32_t val_lo = Low32Bits(val);
354 int32_t val_hi = High32Bits(val);
355 LIR* taken = &block_label_list_[bb->taken];
356 LIR* not_taken = &block_label_list_[bb->fall_through];
357 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
buzbee2700f7e2014-03-07 09:46:20 -0800358 RegStorage low_reg = rl_src1.reg.GetLow();
359 RegStorage high_reg = rl_src1.reg.GetHigh();
Mark Mendell412d4f82013-12-18 13:32:36 -0800360
361 if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) {
buzbee2700f7e2014-03-07 09:46:20 -0800362 RegStorage t_reg = AllocTemp();
Mark Mendell412d4f82013-12-18 13:32:36 -0800363 OpRegRegReg(kOpOr, t_reg, low_reg, high_reg);
364 FreeTemp(t_reg);
365 OpCondBranch(ccode, taken);
366 return;
367 }
368
369 OpRegImm(kOpCmp, high_reg, val_hi);
370 switch (ccode) {
371 case kCondEq:
372 case kCondNe:
373 OpCondBranch(kCondNe, (ccode == kCondEq) ? not_taken : taken);
374 break;
375 case kCondLt:
376 OpCondBranch(kCondLt, taken);
377 OpCondBranch(kCondGt, not_taken);
378 ccode = kCondUlt;
379 break;
380 case kCondLe:
381 OpCondBranch(kCondLt, taken);
382 OpCondBranch(kCondGt, not_taken);
383 ccode = kCondLs;
384 break;
385 case kCondGt:
386 OpCondBranch(kCondGt, taken);
387 OpCondBranch(kCondLt, not_taken);
388 ccode = kCondHi;
389 break;
390 case kCondGe:
391 OpCondBranch(kCondGt, taken);
392 OpCondBranch(kCondLt, not_taken);
393 ccode = kCondUge;
394 break;
395 default:
396 LOG(FATAL) << "Unexpected ccode: " << ccode;
397 }
398 OpCmpImmBranch(ccode, low_reg, val_lo, taken);
399}
400
Mark Mendell2bf31e62014-01-23 12:13:40 -0800401void X86Mir2Lir::CalculateMagicAndShift(int divisor, int& magic, int& shift) {
402 // It does not make sense to calculate magic and shift for zero divisor.
403 DCHECK_NE(divisor, 0);
404
405 /* According to H.S.Warren's Hacker's Delight Chapter 10 and
406 * T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
407 * The magic number M and shift S can be calculated in the following way:
408 * Let nc be the most positive value of numerator(n) such that nc = kd - 1,
409 * where divisor(d) >=2.
410 * Let nc be the most negative value of numerator(n) such that nc = kd + 1,
411 * where divisor(d) <= -2.
412 * Thus nc can be calculated like:
413 * nc = 2^31 + 2^31 % d - 1, where d >= 2
414 * nc = -2^31 + (2^31 + 1) % d, where d >= 2.
415 *
416 * So the shift p is the smallest p satisfying
417 * 2^p > nc * (d - 2^p % d), where d >= 2
418 * 2^p > nc * (d + 2^p % d), where d <= -2.
419 *
420 * the magic number M is calcuated by
421 * M = (2^p + d - 2^p % d) / d, where d >= 2
422 * M = (2^p - d - 2^p % d) / d, where d <= -2.
423 *
424 * Notice that p is always bigger than or equal to 32, so we just return 32-p as
425 * the shift number S.
426 */
427
428 int32_t p = 31;
429 const uint32_t two31 = 0x80000000U;
430
431 // Initialize the computations.
432 uint32_t abs_d = (divisor >= 0) ? divisor : -divisor;
433 uint32_t tmp = two31 + (static_cast<uint32_t>(divisor) >> 31);
434 uint32_t abs_nc = tmp - 1 - tmp % abs_d;
435 uint32_t quotient1 = two31 / abs_nc;
436 uint32_t remainder1 = two31 % abs_nc;
437 uint32_t quotient2 = two31 / abs_d;
438 uint32_t remainder2 = two31 % abs_d;
439
440 /*
441 * To avoid handling both positive and negative divisor, Hacker's Delight
442 * introduces a method to handle these 2 cases together to avoid duplication.
443 */
444 uint32_t delta;
445 do {
446 p++;
447 quotient1 = 2 * quotient1;
448 remainder1 = 2 * remainder1;
449 if (remainder1 >= abs_nc) {
450 quotient1++;
451 remainder1 = remainder1 - abs_nc;
452 }
453 quotient2 = 2 * quotient2;
454 remainder2 = 2 * remainder2;
455 if (remainder2 >= abs_d) {
456 quotient2++;
457 remainder2 = remainder2 - abs_d;
458 }
459 delta = abs_d - remainder2;
460 } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
461
462 magic = (divisor > 0) ? (quotient2 + 1) : (-quotient2 - 1);
463 shift = p - 32;
464}
465
buzbee2700f7e2014-03-07 09:46:20 -0800466RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit, bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700467 LOG(FATAL) << "Unexpected use of GenDivRemLit for x86";
468 return rl_dest;
469}
470
Mark Mendell2bf31e62014-01-23 12:13:40 -0800471RegLocation X86Mir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src,
472 int imm, bool is_div) {
473 // Use a multiply (and fixup) to perform an int div/rem by a constant.
474
475 // We have to use fixed registers, so flush all the temps.
476 FlushAllRegs();
477 LockCallTemps(); // Prepare for explicit register usage.
478
479 // Assume that the result will be in EDX.
buzbee2700f7e2014-03-07 09:46:20 -0800480 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, rs_r2,
481 INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800482
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700483 // handle div/rem by 1 special case.
484 if (imm == 1) {
Mark Mendell2bf31e62014-01-23 12:13:40 -0800485 if (is_div) {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700486 // x / 1 == x.
487 StoreValue(rl_result, rl_src);
488 } else {
489 // x % 1 == 0.
buzbee2700f7e2014-03-07 09:46:20 -0800490 LoadConstantNoClobber(rs_r0, 0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700491 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000492 rl_result.reg.SetReg(r0);
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700493 }
494 } else if (imm == -1) { // handle 0x80000000 / -1 special case.
495 if (is_div) {
496 LIR *minint_branch = 0;
buzbee2700f7e2014-03-07 09:46:20 -0800497 LoadValueDirectFixed(rl_src, rs_r0);
498 OpRegImm(kOpCmp, rs_r0, 0x80000000);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800499 minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondEq);
500
501 // for x != MIN_INT, x / -1 == -x.
502 NewLIR1(kX86Neg32R, r0);
503
504 LIR* branch_around = NewLIR1(kX86Jmp8, 0);
505 // The target for cmp/jmp above.
506 minint_branch->target = NewLIR0(kPseudoTargetLabel);
507 // EAX already contains the right value (0x80000000),
508 branch_around->target = NewLIR0(kPseudoTargetLabel);
509 } else {
510 // x % -1 == 0.
buzbee2700f7e2014-03-07 09:46:20 -0800511 LoadConstantNoClobber(rs_r0, 0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800512 }
513 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000514 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800515 } else {
Alexei Zavjalov79aa4232014-02-13 13:55:50 +0700516 CHECK(imm <= -2 || imm >= 2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800517 // Use H.S.Warren's Hacker's Delight Chapter 10 and
518 // T,Grablund, P.L.Montogomery's Division by invariant integers using multiplication.
519 int magic, shift;
520 CalculateMagicAndShift(imm, magic, shift);
521
522 /*
523 * For imm >= 2,
524 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n > 0
525 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1, while n < 0.
526 * For imm <= -2,
527 * int(n/imm) = ceil(n/imm) = floor(M*n/2^S) +1 , while n > 0
528 * int(n/imm) = floor(n/imm) = floor(M*n/2^S), while n < 0.
529 * We implement this algorithm in the following way:
530 * 1. multiply magic number m and numerator n, get the higher 32bit result in EDX
531 * 2. if imm > 0 and magic < 0, add numerator to EDX
532 * if imm < 0 and magic > 0, sub numerator from EDX
533 * 3. if S !=0, SAR S bits for EDX
534 * 4. add 1 to EDX if EDX < 0
535 * 5. Thus, EDX is the quotient
536 */
537
538 // Numerator into EAX.
buzbee2700f7e2014-03-07 09:46:20 -0800539 RegStorage numerator_reg;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800540 if (!is_div || (imm > 0 && magic < 0) || (imm < 0 && magic > 0)) {
541 // We will need the value later.
542 if (rl_src.location == kLocPhysReg) {
543 // We can use it directly.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000544 DCHECK(rl_src.reg.GetReg() != r0 && rl_src.reg.GetReg() != r2);
buzbee2700f7e2014-03-07 09:46:20 -0800545 numerator_reg = rl_src.reg;
Mark Mendell2bf31e62014-01-23 12:13:40 -0800546 } else {
buzbee2700f7e2014-03-07 09:46:20 -0800547 numerator_reg = rs_r1;
548 LoadValueDirectFixed(rl_src, numerator_reg);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800549 }
buzbee2700f7e2014-03-07 09:46:20 -0800550 OpRegCopy(rs_r0, numerator_reg);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800551 } else {
552 // Only need this once. Just put it into EAX.
buzbee2700f7e2014-03-07 09:46:20 -0800553 LoadValueDirectFixed(rl_src, rs_r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800554 }
555
556 // EDX = magic.
buzbee2700f7e2014-03-07 09:46:20 -0800557 LoadConstantNoClobber(rs_r2, magic);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800558
559 // EDX:EAX = magic & dividend.
560 NewLIR1(kX86Imul32DaR, r2);
561
562 if (imm > 0 && magic < 0) {
563 // Add numerator to EDX.
buzbee2700f7e2014-03-07 09:46:20 -0800564 DCHECK(numerator_reg.Valid());
565 NewLIR2(kX86Add32RR, r2, numerator_reg.GetReg());
Mark Mendell2bf31e62014-01-23 12:13:40 -0800566 } else if (imm < 0 && magic > 0) {
buzbee2700f7e2014-03-07 09:46:20 -0800567 DCHECK(numerator_reg.Valid());
568 NewLIR2(kX86Sub32RR, r2, numerator_reg.GetReg());
Mark Mendell2bf31e62014-01-23 12:13:40 -0800569 }
570
571 // Do we need the shift?
572 if (shift != 0) {
573 // Shift EDX by 'shift' bits.
574 NewLIR2(kX86Sar32RI, r2, shift);
575 }
576
577 // Add 1 to EDX if EDX < 0.
578
579 // Move EDX to EAX.
buzbee2700f7e2014-03-07 09:46:20 -0800580 OpRegCopy(rs_r0, rs_r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800581
582 // Move sign bit to bit 0, zeroing the rest.
583 NewLIR2(kX86Shr32RI, r2, 31);
584
585 // EDX = EDX + EAX.
586 NewLIR2(kX86Add32RR, r2, r0);
587
588 // Quotient is in EDX.
589 if (!is_div) {
590 // We need to compute the remainder.
591 // Remainder is divisor - (quotient * imm).
buzbee2700f7e2014-03-07 09:46:20 -0800592 DCHECK(numerator_reg.Valid());
593 OpRegCopy(rs_r0, numerator_reg);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800594
595 // EAX = numerator * imm.
buzbee2700f7e2014-03-07 09:46:20 -0800596 OpRegRegImm(kOpMul, rs_r2, rs_r2, imm);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800597
598 // EDX -= EAX.
599 NewLIR2(kX86Sub32RR, r0, r2);
600
601 // For this case, return the result in EAX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000602 rl_result.reg.SetReg(r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800603 }
604 }
605
606 return rl_result;
607}
608
buzbee2700f7e2014-03-07 09:46:20 -0800609RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
610 bool is_div) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700611 LOG(FATAL) << "Unexpected use of GenDivRem for x86";
612 return rl_dest;
613}
614
Mark Mendell2bf31e62014-01-23 12:13:40 -0800615RegLocation X86Mir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
616 RegLocation rl_src2, bool is_div, bool check_zero) {
617 // We have to use fixed registers, so flush all the temps.
618 FlushAllRegs();
619 LockCallTemps(); // Prepare for explicit register usage.
620
621 // Load LHS into EAX.
buzbee2700f7e2014-03-07 09:46:20 -0800622 LoadValueDirectFixed(rl_src1, rs_r0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800623
624 // Load RHS into EBX.
buzbee2700f7e2014-03-07 09:46:20 -0800625 LoadValueDirectFixed(rl_src2, rs_r1);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800626
627 // Copy LHS sign bit into EDX.
628 NewLIR0(kx86Cdq32Da);
629
630 if (check_zero) {
631 // Handle division by zero case.
buzbee2700f7e2014-03-07 09:46:20 -0800632 GenImmedCheck(kCondEq, rs_r1, 0, kThrowDivZero);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800633 }
634
635 // Have to catch 0x80000000/-1 case, or we will get an exception!
buzbee2700f7e2014-03-07 09:46:20 -0800636 OpRegImm(kOpCmp, rs_r1, -1);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800637 LIR *minus_one_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
638
639 // RHS is -1.
buzbee2700f7e2014-03-07 09:46:20 -0800640 OpRegImm(kOpCmp, rs_r0, 0x80000000);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800641 LIR * minint_branch = NewLIR2(kX86Jcc8, 0, kX86CondNe);
642
643 // In 0x80000000/-1 case.
644 if (!is_div) {
645 // For DIV, EAX is already right. For REM, we need EDX 0.
buzbee2700f7e2014-03-07 09:46:20 -0800646 LoadConstantNoClobber(rs_r2, 0);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800647 }
648 LIR* done = NewLIR1(kX86Jmp8, 0);
649
650 // Expected case.
651 minus_one_branch->target = NewLIR0(kPseudoTargetLabel);
652 minint_branch->target = minus_one_branch->target;
653 NewLIR1(kX86Idivmod32DaR, r1);
654 done->target = NewLIR0(kPseudoTargetLabel);
655
656 // Result is in EAX for div and EDX for rem.
buzbee2700f7e2014-03-07 09:46:20 -0800657 RegLocation rl_result = {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed, rs_r0,
658 INVALID_SREG, INVALID_SREG};
Mark Mendell2bf31e62014-01-23 12:13:40 -0800659 if (!is_div) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000660 rl_result.reg.SetReg(r2);
Mark Mendell2bf31e62014-01-23 12:13:40 -0800661 }
662 return rl_result;
663}
664
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700665bool X86Mir2Lir::GenInlinedMinMaxInt(CallInfo* info, bool is_min) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700666 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800667
668 // Get the two arguments to the invoke and place them in GP registers.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700669 RegLocation rl_src1 = info->args[0];
670 RegLocation rl_src2 = info->args[1];
671 rl_src1 = LoadValue(rl_src1, kCoreReg);
672 rl_src2 = LoadValue(rl_src2, kCoreReg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800673
Brian Carlstrom7940e442013-07-12 13:46:57 -0700674 RegLocation rl_dest = InlineTarget(info);
675 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800676
677 /*
678 * If the result register is the same as the second element, then we need to be careful.
679 * The reason is that the first copy will inadvertently clobber the second element with
680 * the first one thus yielding the wrong result. Thus we do a swap in that case.
681 */
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000682 if (rl_result.reg.GetReg() == rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800683 std::swap(rl_src1, rl_src2);
684 }
685
686 // Pick the first integer as min/max.
buzbee2700f7e2014-03-07 09:46:20 -0800687 OpRegCopy(rl_result.reg, rl_src1.reg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800688
689 // If the integers are both in the same register, then there is nothing else to do
690 // because they are equal and we have already moved one into the result.
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000691 if (rl_src1.reg.GetReg() != rl_src2.reg.GetReg()) {
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800692 // It is possible we didn't pick correctly so do the actual comparison now.
buzbee2700f7e2014-03-07 09:46:20 -0800693 OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800694
695 // Conditionally move the other integer into the destination register.
696 ConditionCode condition_code = is_min ? kCondGt : kCondLt;
buzbee2700f7e2014-03-07 09:46:20 -0800697 OpCondRegReg(kOpCmov, condition_code, rl_result.reg, rl_src2.reg);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800698 }
699
Brian Carlstrom7940e442013-07-12 13:46:57 -0700700 StoreValue(rl_dest, rl_result);
701 return true;
702}
703
Vladimir Markoe508a202013-11-04 15:24:22 +0000704bool X86Mir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) {
705 RegLocation rl_src_address = info->args[0]; // long address
buzbee2700f7e2014-03-07 09:46:20 -0800706 rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1]
Mark Mendell55d0eac2014-02-06 11:02:52 -0800707 RegLocation rl_dest = size == kLong ? InlineTargetWide(info) : InlineTarget(info);
Vladimir Markoe508a202013-11-04 15:24:22 +0000708 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
709 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
710 if (size == kLong) {
711 // Unaligned access is allowed on x86.
buzbee2700f7e2014-03-07 09:46:20 -0800712 LoadBaseDispWide(rl_address.reg, 0, rl_result.reg, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000713 StoreValueWide(rl_dest, rl_result);
714 } else {
715 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
716 // Unaligned access is allowed on x86.
buzbee2700f7e2014-03-07 09:46:20 -0800717 LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, INVALID_SREG);
Vladimir Markoe508a202013-11-04 15:24:22 +0000718 StoreValue(rl_dest, rl_result);
719 }
720 return true;
721}
722
723bool X86Mir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) {
724 RegLocation rl_src_address = info->args[0]; // long address
buzbee2700f7e2014-03-07 09:46:20 -0800725 rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1]
Vladimir Markoe508a202013-11-04 15:24:22 +0000726 RegLocation rl_src_value = info->args[2]; // [size] value
727 RegLocation rl_address = LoadValue(rl_src_address, kCoreReg);
728 if (size == kLong) {
729 // Unaligned access is allowed on x86.
730 RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg);
buzbee2700f7e2014-03-07 09:46:20 -0800731 StoreBaseDispWide(rl_address.reg, 0, rl_value.reg);
Vladimir Markoe508a202013-11-04 15:24:22 +0000732 } else {
733 DCHECK(size == kSignedByte || size == kSignedHalf || size == kWord);
734 // Unaligned access is allowed on x86.
735 RegLocation rl_value = LoadValue(rl_src_value, kCoreReg);
buzbee2700f7e2014-03-07 09:46:20 -0800736 StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size);
Vladimir Markoe508a202013-11-04 15:24:22 +0000737 }
738 return true;
739}
740
buzbee2700f7e2014-03-07 09:46:20 -0800741void X86Mir2Lir::OpLea(RegStorage r_base, RegStorage reg1, RegStorage reg2, int scale, int offset) {
742 NewLIR5(kX86Lea32RA, r_base.GetReg(), reg1.GetReg(), reg2.GetReg(), scale, offset);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700743}
744
Ian Rogersdd7624d2014-03-14 17:43:00 -0700745void X86Mir2Lir::OpTlsCmp(ThreadOffset<4> offset, int val) {
Ian Rogers468532e2013-08-05 10:56:33 -0700746 NewLIR2(kX86Cmp16TI8, offset.Int32Value(), val);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700747}
748
buzbee2700f7e2014-03-07 09:46:20 -0800749static bool IsInReg(X86Mir2Lir *pMir2Lir, const RegLocation &rl, RegStorage reg) {
750 return rl.reg.Valid() && rl.reg.GetReg() == reg.GetReg() && (pMir2Lir->IsLive(reg) || rl.home);
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700751}
752
Vladimir Marko1c282e22013-11-21 14:49:47 +0000753bool X86Mir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) {
Dmitry Petrochenko6a58cb12014-04-02 17:27:59 +0700754 DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
Vladimir Markoc29bb612013-11-27 16:47:25 +0000755 // Unused - RegLocation rl_src_unsafe = info->args[0];
756 RegLocation rl_src_obj = info->args[1]; // Object - known non-null
757 RegLocation rl_src_offset = info->args[2]; // long low
buzbee2700f7e2014-03-07 09:46:20 -0800758 rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3]
Vladimir Markoc29bb612013-11-27 16:47:25 +0000759 RegLocation rl_src_expected = info->args[4]; // int, long or Object
760 // If is_long, high half is in info->args[5]
761 RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object
762 // If is_long, high half is in info->args[7]
763
764 if (is_long) {
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700765 // TODO: avoid unnecessary loads of SI and DI when the values are in registers.
766 // TODO: CFI support.
Vladimir Marko70b797d2013-12-03 15:25:24 +0000767 FlushAllRegs();
768 LockCallTemps();
buzbee2700f7e2014-03-07 09:46:20 -0800769 RegStorage r_tmp1(RegStorage::k64BitPair, rAX, rDX);
770 RegStorage r_tmp2(RegStorage::k64BitPair, rBX, rCX);
771 LoadValueDirectWideFixed(rl_src_expected, r_tmp1);
772 LoadValueDirectWideFixed(rl_src_new_value, r_tmp2);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000773 NewLIR1(kX86Push32R, rDI);
774 MarkTemp(rDI);
775 LockTemp(rDI);
776 NewLIR1(kX86Push32R, rSI);
777 MarkTemp(rSI);
778 LockTemp(rSI);
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000779 const int push_offset = 4 /* push edi */ + 4 /* push esi */;
buzbee2700f7e2014-03-07 09:46:20 -0800780 int srcObjSp = IsInReg(this, rl_src_obj, rs_rSI) ? 0
781 : (IsInReg(this, rl_src_obj, rs_rDI) ? 4
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700782 : (SRegOffset(rl_src_obj.s_reg_low) + push_offset));
buzbee2700f7e2014-03-07 09:46:20 -0800783 LoadWordDisp(TargetReg(kSp), srcObjSp, rs_rDI);
784 int srcOffsetSp = IsInReg(this, rl_src_offset, rs_rSI) ? 0
785 : (IsInReg(this, rl_src_offset, rs_rDI) ? 4
Yevgeny Rouband3a2dfa2014-03-18 15:55:16 +0700786 : (SRegOffset(rl_src_offset.s_reg_low) + push_offset));
buzbee2700f7e2014-03-07 09:46:20 -0800787 LoadWordDisp(TargetReg(kSp), srcOffsetSp, rs_rSI);
Vladimir Marko70b797d2013-12-03 15:25:24 +0000788 NewLIR4(kX86LockCmpxchg8bA, rDI, rSI, 0, 0);
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800789
790 // After a store we need to insert barrier in case of potential load. Since the
791 // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
792 GenMemBarrier(kStoreLoad);
793
Vladimir Marko70b797d2013-12-03 15:25:24 +0000794 FreeTemp(rSI);
795 UnmarkTemp(rSI);
796 NewLIR1(kX86Pop32R, rSI);
797 FreeTemp(rDI);
798 UnmarkTemp(rDI);
799 NewLIR1(kX86Pop32R, rDI);
800 FreeCallTemps();
Vladimir Markoc29bb612013-11-27 16:47:25 +0000801 } else {
802 // EAX must hold expected for CMPXCHG. Neither rl_new_value, nor r_ptr may be in EAX.
buzbee2700f7e2014-03-07 09:46:20 -0800803 FlushReg(rs_r0);
804 LockTemp(rs_r0);
Vladimir Markoc29bb612013-11-27 16:47:25 +0000805
Vladimir Markoc29bb612013-11-27 16:47:25 +0000806 RegLocation rl_object = LoadValue(rl_src_obj, kCoreReg);
807 RegLocation rl_new_value = LoadValue(rl_src_new_value, kCoreReg);
808
809 if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) {
810 // Mark card for object assuming new value is stored.
811 FreeTemp(r0); // Temporarily release EAX for MarkGCCard().
buzbee2700f7e2014-03-07 09:46:20 -0800812 MarkGCCard(rl_new_value.reg, rl_object.reg);
Vladimir Markoc29bb612013-11-27 16:47:25 +0000813 LockTemp(r0);
814 }
815
816 RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
buzbee2700f7e2014-03-07 09:46:20 -0800817 LoadValueDirect(rl_src_expected, rs_r0);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000818 NewLIR5(kX86LockCmpxchgAR, rl_object.reg.GetReg(), rl_offset.reg.GetReg(), 0, 0, rl_new_value.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000819
Razvan A Lupusoru99ad7232014-02-25 17:41:08 -0800820 // After a store we need to insert barrier in case of potential load. Since the
821 // locked cmpxchg has full barrier semantics, only a scheduling barrier will be generated.
822 GenMemBarrier(kStoreLoad);
823
Vladimir Markoc29bb612013-11-27 16:47:25 +0000824 FreeTemp(r0);
825 }
826
827 // Convert ZF to boolean
828 RegLocation rl_dest = InlineTarget(info); // boolean place for result
829 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +0000830 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondZ);
831 NewLIR2(kX86Movzx8RR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
Vladimir Markoc29bb612013-11-27 16:47:25 +0000832 StoreValue(rl_dest, rl_result);
833 return true;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700834}
835
buzbee2700f7e2014-03-07 09:46:20 -0800836LIR* X86Mir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) {
Mark Mendell55d0eac2014-02-06 11:02:52 -0800837 CHECK(base_of_code_ != nullptr);
838
839 // Address the start of the method
840 RegLocation rl_method = mir_graph_->GetRegLocation(base_of_code_->s_reg_low);
841 LoadValueDirectFixed(rl_method, reg);
842 store_method_addr_used_ = true;
843
844 // Load the proper value from the literal area.
845 // We don't know the proper offset for the value, so pick one that will force
846 // 4 byte offset. We will fix this up in the assembler later to have the right
847 // value.
buzbee2700f7e2014-03-07 09:46:20 -0800848 LIR *res = RawLIR(current_dalvik_offset_, kX86Mov32RM, reg.GetReg(), reg.GetReg(), 256,
849 0, 0, target);
Mark Mendell55d0eac2014-02-06 11:02:52 -0800850 res->target = target;
851 res->flags.fixup = kFixupLoad;
852 SetMemRefType(res, true, kLiteral);
853 store_method_addr_used_ = true;
854 return res;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700855}
856
buzbee2700f7e2014-03-07 09:46:20 -0800857LIR* X86Mir2Lir::OpVldm(RegStorage r_base, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700858 LOG(FATAL) << "Unexpected use of OpVldm for x86";
859 return NULL;
860}
861
buzbee2700f7e2014-03-07 09:46:20 -0800862LIR* X86Mir2Lir::OpVstm(RegStorage r_base, int count) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700863 LOG(FATAL) << "Unexpected use of OpVstm for x86";
864 return NULL;
865}
866
867void X86Mir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src,
868 RegLocation rl_result, int lit,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700869 int first_bit, int second_bit) {
buzbee2700f7e2014-03-07 09:46:20 -0800870 RegStorage t_reg = AllocTemp();
871 OpRegRegImm(kOpLsl, t_reg, rl_src.reg, second_bit - first_bit);
872 OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, t_reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700873 FreeTemp(t_reg);
874 if (first_bit != 0) {
buzbee2700f7e2014-03-07 09:46:20 -0800875 OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700876 }
877}
878
buzbee2700f7e2014-03-07 09:46:20 -0800879void X86Mir2Lir::GenDivZeroCheck(RegStorage reg) {
880 DCHECK(reg.IsPair()); // TODO: allow 64BitSolo.
881 // We are not supposed to clobber the incoming storage, so allocate a temporary.
882 RegStorage t_reg = AllocTemp();
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800883
884 // Doing an OR is a quick way to check if both registers are zero. This will set the flags.
buzbee2700f7e2014-03-07 09:46:20 -0800885 OpRegRegReg(kOpOr, t_reg, reg.GetLow(), reg.GetHigh());
Razvan A Lupusoru090dd442013-12-20 14:35:03 -0800886
887 // In case of zero, throw ArithmeticException.
888 GenCheck(kCondEq, kThrowDivZero);
889
890 // The temp is no longer needed so free it at this time.
Brian Carlstrom7940e442013-07-12 13:46:57 -0700891 FreeTemp(t_reg);
892}
893
894// Test suspend flag, return target of taken suspend branch
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700895LIR* X86Mir2Lir::OpTestSuspend(LIR* target) {
Ian Rogersdd7624d2014-03-14 17:43:00 -0700896 OpTlsCmp(Thread::ThreadFlagsOffset<4>(), 0);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700897 return OpCondBranch((target == NULL) ? kCondNe : kCondEq, target);
898}
899
900// Decrement register and branch on condition
buzbee2700f7e2014-03-07 09:46:20 -0800901LIR* X86Mir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700902 OpRegImm(kOpSub, reg, 1);
Yixin Shoua0dac3e2014-01-23 05:01:22 -0800903 return OpCondBranch(c_code, target);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700904}
905
buzbee11b63d12013-08-27 07:34:17 -0700906bool X86Mir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700907 RegLocation rl_src, RegLocation rl_dest, int lit) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700908 LOG(FATAL) << "Unexpected use of smallLiteralDive in x86";
909 return false;
910}
911
Ian Rogerse2143c02014-03-28 08:47:16 -0700912bool X86Mir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
913 LOG(FATAL) << "Unexpected use of easyMultiply in x86";
914 return false;
915}
916
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700917LIR* X86Mir2Lir::OpIT(ConditionCode cond, const char* guide) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700918 LOG(FATAL) << "Unexpected use of OpIT in x86";
919 return NULL;
920}
921
buzbee2700f7e2014-03-07 09:46:20 -0800922void X86Mir2Lir::GenImulRegImm(RegStorage dest, RegStorage src, int val) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800923 switch (val) {
924 case 0:
buzbee2700f7e2014-03-07 09:46:20 -0800925 NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800926 break;
927 case 1:
928 OpRegCopy(dest, src);
929 break;
930 default:
931 OpRegRegImm(kOpMul, dest, src, val);
932 break;
933 }
934}
935
buzbee2700f7e2014-03-07 09:46:20 -0800936void X86Mir2Lir::GenImulMemImm(RegStorage dest, int sreg, int displacement, int val) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800937 LIR *m;
938 switch (val) {
939 case 0:
buzbee2700f7e2014-03-07 09:46:20 -0800940 NewLIR2(kX86Xor32RR, dest.GetReg(), dest.GetReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800941 break;
942 case 1:
buzbee2700f7e2014-03-07 09:46:20 -0800943 LoadBaseDisp(rs_rX86_SP, displacement, dest, kWord, sreg);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800944 break;
945 default:
buzbee2700f7e2014-03-07 09:46:20 -0800946 m = NewLIR4(IS_SIMM8(val) ? kX86Imul32RMI8 : kX86Imul32RMI, dest.GetReg(), rX86_SP,
Mark Mendell4708dcd2014-01-22 09:05:18 -0800947 displacement, val);
948 AnnotateDalvikRegAccess(m, displacement >> 2, true /* is_load */, true /* is_64bit */);
949 break;
950 }
951}
952
Mark Mendelle02d48f2014-01-15 11:19:23 -0800953void X86Mir2Lir::GenMulLong(Instruction::Code, RegLocation rl_dest, RegLocation rl_src1,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700954 RegLocation rl_src2) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800955 if (rl_src1.is_const) {
956 std::swap(rl_src1, rl_src2);
957 }
958 // Are we multiplying by a constant?
959 if (rl_src2.is_const) {
960 // Do special compare/branch against simple const operand
961 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
962 if (val == 0) {
963 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -0800964 OpRegReg(kOpXor, rl_result.reg.GetLow(), rl_result.reg.GetLow());
965 OpRegReg(kOpXor, rl_result.reg.GetHigh(), rl_result.reg.GetHigh());
Mark Mendell4708dcd2014-01-22 09:05:18 -0800966 StoreValueWide(rl_dest, rl_result);
967 return;
968 } else if (val == 1) {
Mark Mendell4708dcd2014-01-22 09:05:18 -0800969 StoreValueWide(rl_dest, rl_src1);
970 return;
971 } else if (val == 2) {
972 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src1, rl_src1);
973 return;
974 } else if (IsPowerOfTwo(val)) {
975 int shift_amount = LowestSetBit(val);
976 if (!BadOverlap(rl_src1, rl_dest)) {
977 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
978 RegLocation rl_result = GenShiftImmOpLong(Instruction::SHL_LONG, rl_dest,
979 rl_src1, shift_amount);
980 StoreValueWide(rl_dest, rl_result);
981 return;
982 }
983 }
984
985 // Okay, just bite the bullet and do it.
986 int32_t val_lo = Low32Bits(val);
987 int32_t val_hi = High32Bits(val);
988 FlushAllRegs();
989 LockCallTemps(); // Prepare for explicit register usage.
990 rl_src1 = UpdateLocWide(rl_src1);
991 bool src1_in_reg = rl_src1.location == kLocPhysReg;
992 int displacement = SRegOffset(rl_src1.s_reg_low);
993
994 // ECX <- 1H * 2L
995 // EAX <- 1L * 2H
996 if (src1_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -0800997 GenImulRegImm(rs_r1, rl_src1.reg.GetHigh(), val_lo);
998 GenImulRegImm(rs_r0, rl_src1.reg.GetLow(), val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -0800999 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001000 GenImulMemImm(rs_r1, GetSRegHi(rl_src1.s_reg_low), displacement + HIWORD_OFFSET, val_lo);
1001 GenImulMemImm(rs_r0, rl_src1.s_reg_low, displacement + LOWORD_OFFSET, val_hi);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001002 }
1003
1004 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1005 NewLIR2(kX86Add32RR, r1, r0);
1006
1007 // EAX <- 2L
buzbee2700f7e2014-03-07 09:46:20 -08001008 LoadConstantNoClobber(rs_r0, val_lo);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001009
1010 // EDX:EAX <- 2L * 1L (double precision)
1011 if (src1_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -08001012 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001013 } else {
1014 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1015 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1016 true /* is_load */, true /* is_64bit */);
1017 }
1018
1019 // EDX <- EDX + ECX (add high words)
1020 NewLIR2(kX86Add32RR, r2, r1);
1021
1022 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001023 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
buzbee2700f7e2014-03-07 09:46:20 -08001024 RegStorage::MakeRegPair(rs_r0, rs_r2),
Mark Mendell4708dcd2014-01-22 09:05:18 -08001025 INVALID_SREG, INVALID_SREG};
1026 StoreValueWide(rl_dest, rl_result);
1027 return;
1028 }
1029
1030 // Nope. Do it the hard way
Mark Mendellde99bba2014-02-14 12:15:02 -08001031 // Check for V*V. We can eliminate a multiply in that case, as 2L*1H == 2H*1L.
1032 bool is_square = mir_graph_->SRegToVReg(rl_src1.s_reg_low) ==
1033 mir_graph_->SRegToVReg(rl_src2.s_reg_low);
1034
Mark Mendell4708dcd2014-01-22 09:05:18 -08001035 FlushAllRegs();
1036 LockCallTemps(); // Prepare for explicit register usage.
1037 rl_src1 = UpdateLocWide(rl_src1);
1038 rl_src2 = UpdateLocWide(rl_src2);
1039
1040 // At this point, the VRs are in their home locations.
1041 bool src1_in_reg = rl_src1.location == kLocPhysReg;
1042 bool src2_in_reg = rl_src2.location == kLocPhysReg;
1043
1044 // ECX <- 1H
1045 if (src1_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001046 NewLIR2(kX86Mov32RR, r1, rl_src1.reg.GetHighReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001047 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001048 LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src1.s_reg_low) + HIWORD_OFFSET, rs_r1,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001049 kWord, GetSRegHi(rl_src1.s_reg_low));
1050 }
1051
Mark Mendellde99bba2014-02-14 12:15:02 -08001052 if (is_square) {
1053 // Take advantage of the fact that the values are the same.
1054 // ECX <- ECX * 2L (1H * 2L)
1055 if (src2_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -08001056 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetLowReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001057 } else {
1058 int displacement = SRegOffset(rl_src2.s_reg_low);
1059 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1060 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1061 true /* is_load */, true /* is_64bit */);
1062 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001063
Mark Mendellde99bba2014-02-14 12:15:02 -08001064 // ECX <- 2*ECX (2H * 1L) + (1H * 2L)
1065 NewLIR2(kX86Add32RR, r1, r1);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001066 } else {
Mark Mendellde99bba2014-02-14 12:15:02 -08001067 // EAX <- 2H
1068 if (src2_in_reg) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001069 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetHighReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001070 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001071 LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + HIWORD_OFFSET, rs_r0,
Mark Mendellde99bba2014-02-14 12:15:02 -08001072 kWord, GetSRegHi(rl_src2.s_reg_low));
1073 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001074
Mark Mendellde99bba2014-02-14 12:15:02 -08001075 // EAX <- EAX * 1L (2H * 1L)
1076 if (src1_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -08001077 NewLIR2(kX86Imul32RR, r0, rl_src1.reg.GetLowReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001078 } else {
1079 int displacement = SRegOffset(rl_src1.s_reg_low);
1080 LIR *m = NewLIR3(kX86Imul32RM, r0, rX86_SP, displacement + LOWORD_OFFSET);
1081 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1082 true /* is_load */, true /* is_64bit */);
1083 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001084
Mark Mendellde99bba2014-02-14 12:15:02 -08001085 // ECX <- ECX * 2L (1H * 2L)
1086 if (src2_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -08001087 NewLIR2(kX86Imul32RR, r1, rl_src2.reg.GetLowReg());
Mark Mendellde99bba2014-02-14 12:15:02 -08001088 } else {
1089 int displacement = SRegOffset(rl_src2.s_reg_low);
1090 LIR *m = NewLIR3(kX86Imul32RM, r1, rX86_SP, displacement + LOWORD_OFFSET);
1091 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1092 true /* is_load */, true /* is_64bit */);
1093 }
1094
1095 // ECX <- ECX + EAX (2H * 1L) + (1H * 2L)
1096 NewLIR2(kX86Add32RR, r1, r0);
1097 }
Mark Mendell4708dcd2014-01-22 09:05:18 -08001098
1099 // EAX <- 2L
1100 if (src2_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -08001101 NewLIR2(kX86Mov32RR, r0, rl_src2.reg.GetLowReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001102 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001103 LoadBaseDisp(rs_rX86_SP, SRegOffset(rl_src2.s_reg_low) + LOWORD_OFFSET, rs_r0,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001104 kWord, rl_src2.s_reg_low);
1105 }
1106
1107 // EDX:EAX <- 2L * 1L (double precision)
1108 if (src1_in_reg) {
buzbee2700f7e2014-03-07 09:46:20 -08001109 NewLIR1(kX86Mul32DaR, rl_src1.reg.GetLowReg());
Mark Mendell4708dcd2014-01-22 09:05:18 -08001110 } else {
1111 int displacement = SRegOffset(rl_src1.s_reg_low);
1112 LIR *m = NewLIR2(kX86Mul32DaM, rX86_SP, displacement + LOWORD_OFFSET);
1113 AnnotateDalvikRegAccess(m, (displacement + LOWORD_OFFSET) >> 2,
1114 true /* is_load */, true /* is_64bit */);
1115 }
1116
1117 // EDX <- EDX + ECX (add high words)
1118 NewLIR2(kX86Add32RR, r2, r1);
1119
1120 // Result is EDX:EAX
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001121 RegLocation rl_result = {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, kVectorNotUsed,
buzbee2700f7e2014-03-07 09:46:20 -08001122 RegStorage::MakeRegPair(rs_r0, rs_r2), INVALID_SREG, INVALID_SREG};
Mark Mendell4708dcd2014-01-22 09:05:18 -08001123 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001124}
Mark Mendelle02d48f2014-01-15 11:19:23 -08001125
1126void X86Mir2Lir::GenLongRegOrMemOp(RegLocation rl_dest, RegLocation rl_src,
1127 Instruction::Code op) {
1128 DCHECK_EQ(rl_dest.location, kLocPhysReg);
1129 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
1130 if (rl_src.location == kLocPhysReg) {
1131 // Both operands are in registers.
Serguei Katkovab5545f2014-03-25 10:51:15 +07001132 // But we must ensure that rl_src is in pair
1133 rl_src = EvalLocWide(rl_src, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08001134 if (rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001135 // The registers are the same, so we would clobber it before the use.
buzbee2700f7e2014-03-07 09:46:20 -08001136 RegStorage temp_reg = AllocTemp();
1137 OpRegCopy(temp_reg, rl_dest.reg);
1138 rl_src.reg.SetHighReg(temp_reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001139 }
buzbee2700f7e2014-03-07 09:46:20 -08001140 NewLIR2(x86op, rl_dest.reg.GetLowReg(), rl_src.reg.GetLowReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001141
1142 x86op = GetOpcode(op, rl_dest, rl_src, true);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001143 NewLIR2(x86op, rl_dest.reg.GetHighReg(), rl_src.reg.GetHighReg());
buzbee2700f7e2014-03-07 09:46:20 -08001144 FreeTemp(rl_src.reg);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001145 return;
1146 }
1147
1148 // RHS is in memory.
1149 DCHECK((rl_src.location == kLocDalvikFrame) ||
1150 (rl_src.location == kLocCompilerTemp));
buzbee2700f7e2014-03-07 09:46:20 -08001151 int r_base = TargetReg(kSp).GetReg();
Mark Mendelle02d48f2014-01-15 11:19:23 -08001152 int displacement = SRegOffset(rl_src.s_reg_low);
1153
buzbee2700f7e2014-03-07 09:46:20 -08001154 LIR *lir = NewLIR3(x86op, rl_dest.reg.GetLowReg(), r_base, displacement + LOWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001155 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
1156 true /* is_load */, true /* is64bit */);
1157 x86op = GetOpcode(op, rl_dest, rl_src, true);
buzbee2700f7e2014-03-07 09:46:20 -08001158 lir = NewLIR3(x86op, rl_dest.reg.GetHighReg(), r_base, displacement + HIWORD_OFFSET);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001159 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
1160 true /* is_load */, true /* is64bit */);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001161}
1162
Mark Mendelle02d48f2014-01-15 11:19:23 -08001163void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1164 rl_dest = UpdateLocWide(rl_dest);
1165 if (rl_dest.location == kLocPhysReg) {
1166 // Ensure we are in a register pair
1167 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1168
1169 rl_src = UpdateLocWide(rl_src);
1170 GenLongRegOrMemOp(rl_result, rl_src, op);
1171 StoreFinalValueWide(rl_dest, rl_result);
1172 return;
1173 }
1174
1175 // It wasn't in registers, so it better be in memory.
1176 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1177 (rl_dest.location == kLocCompilerTemp));
1178 rl_src = LoadValueWide(rl_src, kCoreReg);
1179
1180 // Operate directly into memory.
1181 X86OpCode x86op = GetOpcode(op, rl_dest, rl_src, false);
buzbee2700f7e2014-03-07 09:46:20 -08001182 int r_base = TargetReg(kSp).GetReg();
Mark Mendelle02d48f2014-01-15 11:19:23 -08001183 int displacement = SRegOffset(rl_dest.s_reg_low);
1184
buzbee2700f7e2014-03-07 09:46:20 -08001185 LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, rl_src.reg.GetLowReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001186 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
Serguei Katkov217fe732014-03-27 14:41:56 +07001187 true /* is_load */, true /* is64bit */);
1188 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
Mark Mendelle02d48f2014-01-15 11:19:23 -08001189 false /* is_load */, true /* is64bit */);
1190 x86op = GetOpcode(op, rl_dest, rl_src, true);
buzbee2700f7e2014-03-07 09:46:20 -08001191 lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, rl_src.reg.GetHighReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001192 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
Serguei Katkov217fe732014-03-27 14:41:56 +07001193 true /* is_load */, true /* is64bit */);
1194 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
Mark Mendelle02d48f2014-01-15 11:19:23 -08001195 false /* is_load */, true /* is64bit */);
buzbee2700f7e2014-03-07 09:46:20 -08001196 FreeTemp(rl_src.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001197}
1198
Mark Mendelle02d48f2014-01-15 11:19:23 -08001199void X86Mir2Lir::GenLongArith(RegLocation rl_dest, RegLocation rl_src1,
1200 RegLocation rl_src2, Instruction::Code op,
1201 bool is_commutative) {
1202 // Is this really a 2 operand operation?
1203 switch (op) {
1204 case Instruction::ADD_LONG_2ADDR:
1205 case Instruction::SUB_LONG_2ADDR:
1206 case Instruction::AND_LONG_2ADDR:
1207 case Instruction::OR_LONG_2ADDR:
1208 case Instruction::XOR_LONG_2ADDR:
1209 GenLongArith(rl_dest, rl_src2, op);
1210 return;
1211 default:
1212 break;
1213 }
1214
1215 if (rl_dest.location == kLocPhysReg) {
1216 RegLocation rl_result = LoadValueWide(rl_src1, kCoreReg);
1217
1218 // We are about to clobber the LHS, so it needs to be a temp.
1219 rl_result = ForceTempWide(rl_result);
1220
1221 // Perform the operation using the RHS.
1222 rl_src2 = UpdateLocWide(rl_src2);
1223 GenLongRegOrMemOp(rl_result, rl_src2, op);
1224
1225 // And now record that the result is in the temp.
1226 StoreFinalValueWide(rl_dest, rl_result);
1227 return;
1228 }
1229
1230 // It wasn't in registers, so it better be in memory.
1231 DCHECK((rl_dest.location == kLocDalvikFrame) ||
1232 (rl_dest.location == kLocCompilerTemp));
1233 rl_src1 = UpdateLocWide(rl_src1);
1234 rl_src2 = UpdateLocWide(rl_src2);
1235
1236 // Get one of the source operands into temporary register.
1237 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
buzbee2700f7e2014-03-07 09:46:20 -08001238 if (IsTemp(rl_src1.reg.GetLowReg()) && IsTemp(rl_src1.reg.GetHighReg())) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001239 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1240 } else if (is_commutative) {
1241 rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1242 // We need at least one of them to be a temporary.
buzbee2700f7e2014-03-07 09:46:20 -08001243 if (!(IsTemp(rl_src2.reg.GetLowReg()) && IsTemp(rl_src2.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001244 rl_src1 = ForceTempWide(rl_src1);
Yevgeny Rouban91b6ffa2014-03-07 14:35:44 +07001245 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1246 } else {
1247 GenLongRegOrMemOp(rl_src2, rl_src1, op);
1248 StoreFinalValueWide(rl_dest, rl_src2);
1249 return;
Mark Mendelle02d48f2014-01-15 11:19:23 -08001250 }
Mark Mendelle02d48f2014-01-15 11:19:23 -08001251 } else {
1252 // Need LHS to be the temp.
1253 rl_src1 = ForceTempWide(rl_src1);
1254 GenLongRegOrMemOp(rl_src1, rl_src2, op);
1255 }
1256
1257 StoreFinalValueWide(rl_dest, rl_src1);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001258}
1259
Mark Mendelle02d48f2014-01-15 11:19:23 -08001260void X86Mir2Lir::GenAddLong(Instruction::Code opcode, RegLocation rl_dest,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001261 RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001262 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1263}
1264
1265void X86Mir2Lir::GenSubLong(Instruction::Code opcode, RegLocation rl_dest,
1266 RegLocation rl_src1, RegLocation rl_src2) {
1267 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, false);
1268}
1269
1270void X86Mir2Lir::GenAndLong(Instruction::Code opcode, RegLocation rl_dest,
1271 RegLocation rl_src1, RegLocation rl_src2) {
1272 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1273}
1274
1275void X86Mir2Lir::GenOrLong(Instruction::Code opcode, RegLocation rl_dest,
1276 RegLocation rl_src1, RegLocation rl_src2) {
1277 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
1278}
1279
1280void X86Mir2Lir::GenXorLong(Instruction::Code opcode, RegLocation rl_dest,
1281 RegLocation rl_src1, RegLocation rl_src2) {
1282 GenLongArith(rl_dest, rl_src1, rl_src2, opcode, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001283}
1284
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001285void X86Mir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001286 rl_src = LoadValueWide(rl_src, kCoreReg);
1287 RegLocation rl_result = ForceTempWide(rl_src);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001288 if (((rl_dest.location == kLocPhysReg) && (rl_src.location == kLocPhysReg)) &&
buzbee2700f7e2014-03-07 09:46:20 -08001289 ((rl_dest.reg.GetLowReg() == rl_src.reg.GetHighReg()))) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001290 // The registers are the same, so we would clobber it before the use.
buzbee2700f7e2014-03-07 09:46:20 -08001291 RegStorage temp_reg = AllocTemp();
1292 OpRegCopy(temp_reg, rl_result.reg);
1293 rl_result.reg.SetHighReg(temp_reg.GetReg());
Mark Mendelle02d48f2014-01-15 11:19:23 -08001294 }
buzbee2700f7e2014-03-07 09:46:20 -08001295 OpRegReg(kOpNeg, rl_result.reg.GetLow(), rl_result.reg.GetLow()); // rLow = -rLow
1296 OpRegImm(kOpAdc, rl_result.reg.GetHigh(), 0); // rHigh = rHigh + CF
1297 OpRegReg(kOpNeg, rl_result.reg.GetHigh(), rl_result.reg.GetHigh()); // rHigh = -rHigh
Brian Carlstrom7940e442013-07-12 13:46:57 -07001298 StoreValueWide(rl_dest, rl_result);
1299}
1300
Ian Rogersdd7624d2014-03-14 17:43:00 -07001301void X86Mir2Lir::OpRegThreadMem(OpKind op, int r_dest, ThreadOffset<4> thread_offset) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001302 X86OpCode opcode = kX86Bkpt;
1303 switch (op) {
1304 case kOpCmp: opcode = kX86Cmp32RT; break;
1305 case kOpMov: opcode = kX86Mov32RT; break;
1306 default:
1307 LOG(FATAL) << "Bad opcode: " << op;
1308 break;
1309 }
Ian Rogers468532e2013-08-05 10:56:33 -07001310 NewLIR2(opcode, r_dest, thread_offset.Int32Value());
Brian Carlstrom7940e442013-07-12 13:46:57 -07001311}
1312
1313/*
1314 * Generate array load
1315 */
1316void X86Mir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001317 RegLocation rl_index, RegLocation rl_dest, int scale) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001318 RegisterClass reg_class = oat_reg_class_by_size(size);
1319 int len_offset = mirror::Array::LengthOffset().Int32Value();
Brian Carlstrom7940e442013-07-12 13:46:57 -07001320 RegLocation rl_result;
1321 rl_array = LoadValue(rl_array, kCoreReg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001322
Mark Mendell343adb52013-12-18 06:02:17 -08001323 int data_offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001324 if (size == kLong || size == kDouble) {
1325 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1326 } else {
1327 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1328 }
1329
Mark Mendell343adb52013-12-18 06:02:17 -08001330 bool constant_index = rl_index.is_const;
1331 int32_t constant_index_value = 0;
1332 if (!constant_index) {
1333 rl_index = LoadValue(rl_index, kCoreReg);
1334 } else {
1335 constant_index_value = mir_graph_->ConstantValue(rl_index);
1336 // If index is constant, just fold it into the data offset
1337 data_offset += constant_index_value << scale;
1338 // treat as non array below
buzbee2700f7e2014-03-07 09:46:20 -08001339 rl_index.reg = RegStorage::InvalidReg();
Mark Mendell343adb52013-12-18 06:02:17 -08001340 }
1341
Brian Carlstrom7940e442013-07-12 13:46:57 -07001342 /* null object? */
buzbee2700f7e2014-03-07 09:46:20 -08001343 GenNullCheck(rl_array.reg, opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001344
1345 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001346 if (constant_index) {
buzbee2700f7e2014-03-07 09:46:20 -08001347 GenMemImmedCheck(kCondLs, rl_array.reg, len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001348 constant_index_value, kThrowConstantArrayBounds);
1349 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001350 GenRegMemCheck(kCondUge, rl_index.reg, rl_array.reg, len_offset, kThrowArrayBounds);
Mark Mendell343adb52013-12-18 06:02:17 -08001351 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001352 }
Mark Mendell343adb52013-12-18 06:02:17 -08001353 rl_result = EvalLoc(rl_dest, reg_class, true);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001354 if ((size == kLong) || (size == kDouble)) {
buzbee2700f7e2014-03-07 09:46:20 -08001355 LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg.GetLow(),
1356 rl_result.reg.GetHigh(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001357 StoreValueWide(rl_dest, rl_result);
1358 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001359 LoadBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_result.reg,
1360 RegStorage::InvalidReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001361 StoreValue(rl_dest, rl_result);
1362 }
1363}
1364
1365/*
1366 * Generate array store
1367 *
1368 */
1369void X86Mir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
Ian Rogersa9a82542013-10-04 11:17:26 -07001370 RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001371 RegisterClass reg_class = oat_reg_class_by_size(size);
1372 int len_offset = mirror::Array::LengthOffset().Int32Value();
1373 int data_offset;
1374
1375 if (size == kLong || size == kDouble) {
1376 data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
1377 } else {
1378 data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
1379 }
1380
1381 rl_array = LoadValue(rl_array, kCoreReg);
Mark Mendell343adb52013-12-18 06:02:17 -08001382 bool constant_index = rl_index.is_const;
1383 int32_t constant_index_value = 0;
1384 if (!constant_index) {
1385 rl_index = LoadValue(rl_index, kCoreReg);
1386 } else {
1387 // If index is constant, just fold it into the data offset
1388 constant_index_value = mir_graph_->ConstantValue(rl_index);
1389 data_offset += constant_index_value << scale;
1390 // treat as non array below
buzbee2700f7e2014-03-07 09:46:20 -08001391 rl_index.reg = RegStorage::InvalidReg();
Mark Mendell343adb52013-12-18 06:02:17 -08001392 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001393
1394 /* null object? */
buzbee2700f7e2014-03-07 09:46:20 -08001395 GenNullCheck(rl_array.reg, opt_flags);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001396
1397 if (!(opt_flags & MIR_IGNORE_RANGE_CHECK)) {
Mark Mendell343adb52013-12-18 06:02:17 -08001398 if (constant_index) {
buzbee2700f7e2014-03-07 09:46:20 -08001399 GenMemImmedCheck(kCondLs, rl_array.reg, len_offset,
Mark Mendell343adb52013-12-18 06:02:17 -08001400 constant_index_value, kThrowConstantArrayBounds);
1401 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001402 GenRegMemCheck(kCondUge, rl_index.reg, rl_array.reg, len_offset, kThrowArrayBounds);
Mark Mendell343adb52013-12-18 06:02:17 -08001403 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001404 }
1405 if ((size == kLong) || (size == kDouble)) {
1406 rl_src = LoadValueWide(rl_src, reg_class);
1407 } else {
1408 rl_src = LoadValue(rl_src, reg_class);
1409 }
1410 // If the src reg can't be byte accessed, move it to a temp first.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001411 if ((size == kSignedByte || size == kUnsignedByte) && rl_src.reg.GetReg() >= 4) {
buzbee2700f7e2014-03-07 09:46:20 -08001412 RegStorage temp = AllocTemp();
1413 OpRegCopy(temp, rl_src.reg);
1414 StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, temp,
1415 RegStorage::InvalidReg(), size, INVALID_SREG);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001416 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001417 if (rl_src.wide) {
1418 StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg.GetLow(),
1419 rl_src.reg.GetHigh(), size, INVALID_SREG);
1420 } else {
1421 StoreBaseIndexedDisp(rl_array.reg, rl_index.reg, scale, data_offset, rl_src.reg,
1422 RegStorage::InvalidReg(), size, INVALID_SREG);
1423 }
Brian Carlstrom7940e442013-07-12 13:46:57 -07001424 }
Ian Rogersa9a82542013-10-04 11:17:26 -07001425 if (card_mark) {
Ian Rogers773aab12013-10-14 13:50:10 -07001426 // Free rl_index if its a temp. Ensures there are 2 free regs for card mark.
Mark Mendell343adb52013-12-18 06:02:17 -08001427 if (!constant_index) {
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001428 FreeTemp(rl_index.reg.GetReg());
Mark Mendell343adb52013-12-18 06:02:17 -08001429 }
buzbee2700f7e2014-03-07 09:46:20 -08001430 MarkGCCard(rl_src.reg, rl_array.reg);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001431 }
1432}
1433
Mark Mendell4708dcd2014-01-22 09:05:18 -08001434RegLocation X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
1435 RegLocation rl_src, int shift_amount) {
1436 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1437 switch (opcode) {
1438 case Instruction::SHL_LONG:
1439 case Instruction::SHL_LONG_2ADDR:
1440 DCHECK_NE(shift_amount, 1); // Prevent a double store from happening.
1441 if (shift_amount == 32) {
buzbee2700f7e2014-03-07 09:46:20 -08001442 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
1443 LoadConstant(rl_result.reg.GetLow(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001444 } else if (shift_amount > 31) {
buzbee2700f7e2014-03-07 09:46:20 -08001445 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetLow());
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001446 FreeTemp(rl_src.reg.GetHighReg());
1447 NewLIR2(kX86Sal32RI, rl_result.reg.GetHighReg(), shift_amount - 32);
buzbee2700f7e2014-03-07 09:46:20 -08001448 LoadConstant(rl_result.reg.GetLow(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001449 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001450 OpRegCopy(rl_result.reg, rl_src.reg);
1451 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1452 NewLIR3(kX86Shld32RRI, rl_result.reg.GetHighReg(), rl_result.reg.GetLowReg(), shift_amount);
1453 NewLIR2(kX86Sal32RI, rl_result.reg.GetLowReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001454 }
1455 break;
1456 case Instruction::SHR_LONG:
1457 case Instruction::SHR_LONG_2ADDR:
1458 if (shift_amount == 32) {
buzbee2700f7e2014-03-07 09:46:20 -08001459 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1460 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001461 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001462 } else if (shift_amount > 31) {
buzbee2700f7e2014-03-07 09:46:20 -08001463 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1464 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1465 NewLIR2(kX86Sar32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001466 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), 31);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001467 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001468 OpRegCopy(rl_result.reg, rl_src.reg);
1469 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1470 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001471 NewLIR2(kX86Sar32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001472 }
1473 break;
1474 case Instruction::USHR_LONG:
1475 case Instruction::USHR_LONG_2ADDR:
1476 if (shift_amount == 32) {
buzbee2700f7e2014-03-07 09:46:20 -08001477 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1478 LoadConstant(rl_result.reg.GetHigh(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001479 } else if (shift_amount > 31) {
buzbee2700f7e2014-03-07 09:46:20 -08001480 OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh());
1481 NewLIR2(kX86Shr32RI, rl_result.reg.GetLowReg(), shift_amount - 32);
1482 LoadConstant(rl_result.reg.GetHigh(), 0);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001483 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001484 OpRegCopy(rl_result.reg, rl_src.reg);
1485 OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg.GetHigh());
1486 NewLIR3(kX86Shrd32RRI, rl_result.reg.GetLowReg(), rl_result.reg.GetHighReg(), shift_amount);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001487 NewLIR2(kX86Shr32RI, rl_result.reg.GetHighReg(), shift_amount);
Mark Mendell4708dcd2014-01-22 09:05:18 -08001488 }
1489 break;
1490 default:
1491 LOG(FATAL) << "Unexpected case";
1492 }
1493 return rl_result;
1494}
1495
Brian Carlstrom7940e442013-07-12 13:46:57 -07001496void X86Mir2Lir::GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
Mark Mendell4708dcd2014-01-22 09:05:18 -08001497 RegLocation rl_src, RegLocation rl_shift) {
1498 // Per spec, we only care about low 6 bits of shift amount.
1499 int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f;
1500 if (shift_amount == 0) {
1501 rl_src = LoadValueWide(rl_src, kCoreReg);
1502 StoreValueWide(rl_dest, rl_src);
1503 return;
1504 } else if (shift_amount == 1 &&
1505 (opcode == Instruction::SHL_LONG || opcode == Instruction::SHL_LONG_2ADDR)) {
1506 // Need to handle this here to avoid calling StoreValueWide twice.
1507 GenAddLong(Instruction::ADD_LONG, rl_dest, rl_src, rl_src);
1508 return;
1509 }
1510 if (BadOverlap(rl_src, rl_dest)) {
1511 GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift);
1512 return;
1513 }
1514 rl_src = LoadValueWide(rl_src, kCoreReg);
1515 RegLocation rl_result = GenShiftImmOpLong(opcode, rl_dest, rl_src, shift_amount);
1516 StoreValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001517}
1518
1519void X86Mir2Lir::GenArithImmOpLong(Instruction::Code opcode,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001520 RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001521 switch (opcode) {
1522 case Instruction::ADD_LONG:
1523 case Instruction::AND_LONG:
1524 case Instruction::OR_LONG:
1525 case Instruction::XOR_LONG:
1526 if (rl_src2.is_const) {
1527 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1528 } else {
1529 DCHECK(rl_src1.is_const);
1530 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1531 }
1532 break;
1533 case Instruction::SUB_LONG:
1534 case Instruction::SUB_LONG_2ADDR:
1535 if (rl_src2.is_const) {
1536 GenLongLongImm(rl_dest, rl_src1, rl_src2, opcode);
1537 } else {
1538 GenSubLong(opcode, rl_dest, rl_src1, rl_src2);
1539 }
1540 break;
1541 case Instruction::ADD_LONG_2ADDR:
1542 case Instruction::OR_LONG_2ADDR:
1543 case Instruction::XOR_LONG_2ADDR:
1544 case Instruction::AND_LONG_2ADDR:
1545 if (rl_src2.is_const) {
1546 GenLongImm(rl_dest, rl_src2, opcode);
1547 } else {
1548 DCHECK(rl_src1.is_const);
1549 GenLongLongImm(rl_dest, rl_src2, rl_src1, opcode);
1550 }
1551 break;
1552 default:
1553 // Default - bail to non-const handler.
1554 GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2);
1555 break;
1556 }
1557}
1558
1559bool X86Mir2Lir::IsNoOp(Instruction::Code op, int32_t value) {
1560 switch (op) {
1561 case Instruction::AND_LONG_2ADDR:
1562 case Instruction::AND_LONG:
1563 return value == -1;
1564 case Instruction::OR_LONG:
1565 case Instruction::OR_LONG_2ADDR:
1566 case Instruction::XOR_LONG:
1567 case Instruction::XOR_LONG_2ADDR:
1568 return value == 0;
1569 default:
1570 return false;
1571 }
1572}
1573
1574X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation dest, RegLocation rhs,
1575 bool is_high_op) {
1576 bool rhs_in_mem = rhs.location != kLocPhysReg;
1577 bool dest_in_mem = dest.location != kLocPhysReg;
1578 DCHECK(!rhs_in_mem || !dest_in_mem);
1579 switch (op) {
1580 case Instruction::ADD_LONG:
1581 case Instruction::ADD_LONG_2ADDR:
1582 if (dest_in_mem) {
1583 return is_high_op ? kX86Adc32MR : kX86Add32MR;
1584 } else if (rhs_in_mem) {
1585 return is_high_op ? kX86Adc32RM : kX86Add32RM;
1586 }
1587 return is_high_op ? kX86Adc32RR : kX86Add32RR;
1588 case Instruction::SUB_LONG:
1589 case Instruction::SUB_LONG_2ADDR:
1590 if (dest_in_mem) {
1591 return is_high_op ? kX86Sbb32MR : kX86Sub32MR;
1592 } else if (rhs_in_mem) {
1593 return is_high_op ? kX86Sbb32RM : kX86Sub32RM;
1594 }
1595 return is_high_op ? kX86Sbb32RR : kX86Sub32RR;
1596 case Instruction::AND_LONG_2ADDR:
1597 case Instruction::AND_LONG:
1598 if (dest_in_mem) {
1599 return kX86And32MR;
1600 }
1601 return rhs_in_mem ? kX86And32RM : kX86And32RR;
1602 case Instruction::OR_LONG:
1603 case Instruction::OR_LONG_2ADDR:
1604 if (dest_in_mem) {
1605 return kX86Or32MR;
1606 }
1607 return rhs_in_mem ? kX86Or32RM : kX86Or32RR;
1608 case Instruction::XOR_LONG:
1609 case Instruction::XOR_LONG_2ADDR:
1610 if (dest_in_mem) {
1611 return kX86Xor32MR;
1612 }
1613 return rhs_in_mem ? kX86Xor32RM : kX86Xor32RR;
1614 default:
1615 LOG(FATAL) << "Unexpected opcode: " << op;
1616 return kX86Add32RR;
1617 }
1618}
1619
1620X86OpCode X86Mir2Lir::GetOpcode(Instruction::Code op, RegLocation loc, bool is_high_op,
1621 int32_t value) {
1622 bool in_mem = loc.location != kLocPhysReg;
1623 bool byte_imm = IS_SIMM8(value);
buzbee2700f7e2014-03-07 09:46:20 -08001624 DCHECK(in_mem || !IsFpReg(loc.reg));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001625 switch (op) {
1626 case Instruction::ADD_LONG:
1627 case Instruction::ADD_LONG_2ADDR:
1628 if (byte_imm) {
1629 if (in_mem) {
1630 return is_high_op ? kX86Adc32MI8 : kX86Add32MI8;
1631 }
1632 return is_high_op ? kX86Adc32RI8 : kX86Add32RI8;
1633 }
1634 if (in_mem) {
1635 return is_high_op ? kX86Adc32MI : kX86Add32MI;
1636 }
1637 return is_high_op ? kX86Adc32RI : kX86Add32RI;
1638 case Instruction::SUB_LONG:
1639 case Instruction::SUB_LONG_2ADDR:
1640 if (byte_imm) {
1641 if (in_mem) {
1642 return is_high_op ? kX86Sbb32MI8 : kX86Sub32MI8;
1643 }
1644 return is_high_op ? kX86Sbb32RI8 : kX86Sub32RI8;
1645 }
1646 if (in_mem) {
1647 return is_high_op ? kX86Sbb32MI : kX86Sub32MI;
1648 }
1649 return is_high_op ? kX86Sbb32RI : kX86Sub32RI;
1650 case Instruction::AND_LONG_2ADDR:
1651 case Instruction::AND_LONG:
1652 if (byte_imm) {
1653 return in_mem ? kX86And32MI8 : kX86And32RI8;
1654 }
1655 return in_mem ? kX86And32MI : kX86And32RI;
1656 case Instruction::OR_LONG:
1657 case Instruction::OR_LONG_2ADDR:
1658 if (byte_imm) {
1659 return in_mem ? kX86Or32MI8 : kX86Or32RI8;
1660 }
1661 return in_mem ? kX86Or32MI : kX86Or32RI;
1662 case Instruction::XOR_LONG:
1663 case Instruction::XOR_LONG_2ADDR:
1664 if (byte_imm) {
1665 return in_mem ? kX86Xor32MI8 : kX86Xor32RI8;
1666 }
1667 return in_mem ? kX86Xor32MI : kX86Xor32RI;
1668 default:
1669 LOG(FATAL) << "Unexpected opcode: " << op;
1670 return kX86Add32MI;
1671 }
1672}
1673
1674void X86Mir2Lir::GenLongImm(RegLocation rl_dest, RegLocation rl_src, Instruction::Code op) {
1675 DCHECK(rl_src.is_const);
1676 int64_t val = mir_graph_->ConstantValueWide(rl_src);
1677 int32_t val_lo = Low32Bits(val);
1678 int32_t val_hi = High32Bits(val);
1679 rl_dest = UpdateLocWide(rl_dest);
1680
1681 // Can we just do this into memory?
1682 if ((rl_dest.location == kLocDalvikFrame) ||
1683 (rl_dest.location == kLocCompilerTemp)) {
buzbee2700f7e2014-03-07 09:46:20 -08001684 int r_base = TargetReg(kSp).GetReg();
Mark Mendelle02d48f2014-01-15 11:19:23 -08001685 int displacement = SRegOffset(rl_dest.s_reg_low);
1686
1687 if (!IsNoOp(op, val_lo)) {
1688 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
buzbee2700f7e2014-03-07 09:46:20 -08001689 LIR *lir = NewLIR3(x86op, r_base, displacement + LOWORD_OFFSET, val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001690 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
Serguei Katkov217fe732014-03-27 14:41:56 +07001691 true /* is_load */, true /* is64bit */);
1692 AnnotateDalvikRegAccess(lir, (displacement + LOWORD_OFFSET) >> 2,
Mark Mendelle02d48f2014-01-15 11:19:23 -08001693 false /* is_load */, true /* is64bit */);
1694 }
1695 if (!IsNoOp(op, val_hi)) {
1696 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
buzbee2700f7e2014-03-07 09:46:20 -08001697 LIR *lir = NewLIR3(x86op, r_base, displacement + HIWORD_OFFSET, val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001698 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
Serguei Katkov217fe732014-03-27 14:41:56 +07001699 true /* is_load */, true /* is64bit */);
1700 AnnotateDalvikRegAccess(lir, (displacement + HIWORD_OFFSET) >> 2,
Mark Mendelle02d48f2014-01-15 11:19:23 -08001701 false /* is_load */, true /* is64bit */);
1702 }
1703 return;
1704 }
1705
1706 RegLocation rl_result = EvalLocWide(rl_dest, kCoreReg, true);
1707 DCHECK_EQ(rl_result.location, kLocPhysReg);
buzbee2700f7e2014-03-07 09:46:20 -08001708 DCHECK(!IsFpReg(rl_result.reg));
Mark Mendelle02d48f2014-01-15 11:19:23 -08001709
1710 if (!IsNoOp(op, val_lo)) {
1711 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
buzbee2700f7e2014-03-07 09:46:20 -08001712 NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001713 }
1714 if (!IsNoOp(op, val_hi)) {
1715 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001716 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001717 }
1718 StoreValueWide(rl_dest, rl_result);
1719}
1720
1721void X86Mir2Lir::GenLongLongImm(RegLocation rl_dest, RegLocation rl_src1,
1722 RegLocation rl_src2, Instruction::Code op) {
1723 DCHECK(rl_src2.is_const);
1724 int64_t val = mir_graph_->ConstantValueWide(rl_src2);
1725 int32_t val_lo = Low32Bits(val);
1726 int32_t val_hi = High32Bits(val);
1727 rl_dest = UpdateLocWide(rl_dest);
1728 rl_src1 = UpdateLocWide(rl_src1);
1729
1730 // Can we do this directly into the destination registers?
1731 if (rl_dest.location == kLocPhysReg && rl_src1.location == kLocPhysReg &&
buzbee2700f7e2014-03-07 09:46:20 -08001732 rl_dest.reg.GetLowReg() == rl_src1.reg.GetLowReg() &&
1733 rl_dest.reg.GetHighReg() == rl_src1.reg.GetHighReg() &&
1734 !IsFpReg(rl_dest.reg)) {
Mark Mendelle02d48f2014-01-15 11:19:23 -08001735 if (!IsNoOp(op, val_lo)) {
1736 X86OpCode x86op = GetOpcode(op, rl_dest, false, val_lo);
buzbee2700f7e2014-03-07 09:46:20 -08001737 NewLIR2(x86op, rl_dest.reg.GetLowReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001738 }
1739 if (!IsNoOp(op, val_hi)) {
1740 X86OpCode x86op = GetOpcode(op, rl_dest, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001741 NewLIR2(x86op, rl_dest.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001742 }
Maxim Kazantsev653f2bf2014-02-13 15:11:17 +07001743
1744 StoreFinalValueWide(rl_dest, rl_dest);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001745 return;
1746 }
1747
1748 rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1749 DCHECK_EQ(rl_src1.location, kLocPhysReg);
1750
1751 // We need the values to be in a temporary
1752 RegLocation rl_result = ForceTempWide(rl_src1);
1753 if (!IsNoOp(op, val_lo)) {
1754 X86OpCode x86op = GetOpcode(op, rl_result, false, val_lo);
buzbee2700f7e2014-03-07 09:46:20 -08001755 NewLIR2(x86op, rl_result.reg.GetLowReg(), val_lo);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001756 }
1757 if (!IsNoOp(op, val_hi)) {
1758 X86OpCode x86op = GetOpcode(op, rl_result, true, val_hi);
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001759 NewLIR2(x86op, rl_result.reg.GetHighReg(), val_hi);
Mark Mendelle02d48f2014-01-15 11:19:23 -08001760 }
1761
1762 StoreFinalValueWide(rl_dest, rl_result);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001763}
1764
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001765// For final classes there are no sub-classes to check and so we can answer the instance-of
1766// question with simple comparisons. Use compares to memory and SETEQ to optimize for x86.
1767void X86Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
1768 RegLocation rl_dest, RegLocation rl_src) {
1769 RegLocation object = LoadValue(rl_src, kCoreReg);
1770 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08001771 RegStorage result_reg = rl_result.reg;
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001772
1773 // SETcc only works with EAX..EDX.
buzbee2700f7e2014-03-07 09:46:20 -08001774 if (result_reg == object.reg || result_reg.GetReg() >= 4) {
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001775 result_reg = AllocTypedTemp(false, kCoreReg);
buzbee2700f7e2014-03-07 09:46:20 -08001776 DCHECK_LT(result_reg.GetReg(), 4);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001777 }
1778
1779 // Assume that there is no match.
1780 LoadConstant(result_reg, 0);
buzbee2700f7e2014-03-07 09:46:20 -08001781 LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001782
buzbee2700f7e2014-03-07 09:46:20 -08001783 RegStorage check_class = AllocTypedTemp(false, kCoreReg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001784
1785 // If Method* is already in a register, we can save a copy.
1786 RegLocation rl_method = mir_graph_->GetMethodLoc();
1787 int32_t offset_of_type = mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
1788 (sizeof(mirror::Class*) * type_idx);
1789
1790 if (rl_method.location == kLocPhysReg) {
1791 if (use_declaring_class) {
buzbee2700f7e2014-03-07 09:46:20 -08001792 LoadWordDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001793 check_class);
1794 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001795 LoadWordDisp(rl_method.reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001796 check_class);
1797 LoadWordDisp(check_class, offset_of_type, check_class);
1798 }
1799 } else {
1800 LoadCurrMethodDirect(check_class);
1801 if (use_declaring_class) {
buzbee2700f7e2014-03-07 09:46:20 -08001802 LoadWordDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001803 check_class);
1804 } else {
buzbee2700f7e2014-03-07 09:46:20 -08001805 LoadWordDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001806 check_class);
1807 LoadWordDisp(check_class, offset_of_type, check_class);
1808 }
1809 }
1810
1811 // Compare the computed class to the class in the object.
1812 DCHECK_EQ(object.location, kLocPhysReg);
buzbee2700f7e2014-03-07 09:46:20 -08001813 OpRegMem(kOpCmp, check_class, object.reg, mirror::Object::ClassOffset().Int32Value());
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001814
1815 // Set the low byte of the result to 0 or 1 from the compare condition code.
buzbee2700f7e2014-03-07 09:46:20 -08001816 NewLIR2(kX86Set8R, result_reg.GetReg(), kX86CondEq);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001817
1818 LIR* target = NewLIR0(kPseudoTargetLabel);
1819 null_branchover->target = target;
1820 FreeTemp(check_class);
1821 if (IsTemp(result_reg)) {
buzbee2700f7e2014-03-07 09:46:20 -08001822 OpRegCopy(rl_result.reg, result_reg);
Mark Mendelldf8ee2e2014-01-27 16:37:47 -08001823 FreeTemp(result_reg);
1824 }
1825 StoreValue(rl_dest, rl_result);
1826}
1827
Mark Mendell6607d972014-02-10 06:54:18 -08001828void X86Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1829 bool type_known_abstract, bool use_declaring_class,
1830 bool can_assume_type_is_in_dex_cache,
1831 uint32_t type_idx, RegLocation rl_dest,
1832 RegLocation rl_src) {
1833 FlushAllRegs();
1834 // May generate a call - use explicit registers.
1835 LockCallTemps();
1836 LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 gets current Method*.
buzbee2700f7e2014-03-07 09:46:20 -08001837 RegStorage class_reg = TargetReg(kArg2); // kArg2 will hold the Class*.
Mark Mendell6607d972014-02-10 06:54:18 -08001838 // Reference must end up in kArg0.
1839 if (needs_access_check) {
1840 // Check we have access to type_idx and if not throw IllegalAccessError,
1841 // Caller function returns Class* in kArg0.
Ian Rogersdd7624d2014-03-14 17:43:00 -07001842 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeTypeAndVerifyAccess),
Mark Mendell6607d972014-02-10 06:54:18 -08001843 type_idx, true);
1844 OpRegCopy(class_reg, TargetReg(kRet0));
1845 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
1846 } else if (use_declaring_class) {
1847 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
buzbee2700f7e2014-03-07 09:46:20 -08001848 LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1849 class_reg);
Mark Mendell6607d972014-02-10 06:54:18 -08001850 } else {
1851 // Load dex cache entry into class_reg (kArg2).
1852 LoadValueDirectFixed(rl_src, TargetReg(kArg0));
buzbee2700f7e2014-03-07 09:46:20 -08001853 LoadWordDisp(TargetReg(kArg1), mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1854 class_reg);
Mark Mendell6607d972014-02-10 06:54:18 -08001855 int32_t offset_of_type =
1856 mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
1857 * type_idx);
1858 LoadWordDisp(class_reg, offset_of_type, class_reg);
1859 if (!can_assume_type_is_in_dex_cache) {
1860 // Need to test presence of type in dex cache at runtime.
1861 LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
1862 // Type is not resolved. Call out to helper, which will return resolved type in kRet0/kArg0.
Ian Rogersdd7624d2014-03-14 17:43:00 -07001863 CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(4, pInitializeType), type_idx, true);
Mark Mendell6607d972014-02-10 06:54:18 -08001864 OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path.
1865 LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* Reload Ref. */
1866 // Rejoin code paths
1867 LIR* hop_target = NewLIR0(kPseudoTargetLabel);
1868 hop_branch->target = hop_target;
1869 }
1870 }
1871 /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result. */
1872 RegLocation rl_result = GetReturn(false);
1873
1874 // SETcc only works with EAX..EDX.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001875 DCHECK_LT(rl_result.reg.GetReg(), 4);
Mark Mendell6607d972014-02-10 06:54:18 -08001876
1877 // Is the class NULL?
1878 LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
1879
1880 /* Load object->klass_. */
1881 DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1882 LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
1883 /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class. */
1884 LIR* branchover = nullptr;
1885 if (type_known_final) {
1886 // Ensure top 3 bytes of result are 0.
buzbee2700f7e2014-03-07 09:46:20 -08001887 LoadConstant(rl_result.reg, 0);
Mark Mendell6607d972014-02-10 06:54:18 -08001888 OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2));
1889 // Set the low byte of the result to 0 or 1 from the compare condition code.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00001890 NewLIR2(kX86Set8R, rl_result.reg.GetReg(), kX86CondEq);
Mark Mendell6607d972014-02-10 06:54:18 -08001891 } else {
1892 if (!type_known_abstract) {
buzbee2700f7e2014-03-07 09:46:20 -08001893 LoadConstant(rl_result.reg, 1); // Assume result succeeds.
Mark Mendell6607d972014-02-10 06:54:18 -08001894 branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
1895 }
1896 OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
Ian Rogersdd7624d2014-03-14 17:43:00 -07001897 OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(4, pInstanceofNonTrivial));
Mark Mendell6607d972014-02-10 06:54:18 -08001898 }
1899 // TODO: only clobber when type isn't final?
1900 ClobberCallerSave();
1901 /* Branch targets here. */
1902 LIR* target = NewLIR0(kPseudoTargetLabel);
1903 StoreValue(rl_dest, rl_result);
1904 branch1->target = target;
1905 if (branchover != nullptr) {
1906 branchover->target = target;
1907 }
1908}
1909
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08001910void X86Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1911 RegLocation rl_lhs, RegLocation rl_rhs) {
1912 OpKind op = kOpBkpt;
1913 bool is_div_rem = false;
1914 bool unary = false;
1915 bool shift_op = false;
1916 bool is_two_addr = false;
1917 RegLocation rl_result;
1918 switch (opcode) {
1919 case Instruction::NEG_INT:
1920 op = kOpNeg;
1921 unary = true;
1922 break;
1923 case Instruction::NOT_INT:
1924 op = kOpMvn;
1925 unary = true;
1926 break;
1927 case Instruction::ADD_INT_2ADDR:
1928 is_two_addr = true;
1929 // Fallthrough
1930 case Instruction::ADD_INT:
1931 op = kOpAdd;
1932 break;
1933 case Instruction::SUB_INT_2ADDR:
1934 is_two_addr = true;
1935 // Fallthrough
1936 case Instruction::SUB_INT:
1937 op = kOpSub;
1938 break;
1939 case Instruction::MUL_INT_2ADDR:
1940 is_two_addr = true;
1941 // Fallthrough
1942 case Instruction::MUL_INT:
1943 op = kOpMul;
1944 break;
1945 case Instruction::DIV_INT_2ADDR:
1946 is_two_addr = true;
1947 // Fallthrough
1948 case Instruction::DIV_INT:
1949 op = kOpDiv;
1950 is_div_rem = true;
1951 break;
1952 /* NOTE: returns in kArg1 */
1953 case Instruction::REM_INT_2ADDR:
1954 is_two_addr = true;
1955 // Fallthrough
1956 case Instruction::REM_INT:
1957 op = kOpRem;
1958 is_div_rem = true;
1959 break;
1960 case Instruction::AND_INT_2ADDR:
1961 is_two_addr = true;
1962 // Fallthrough
1963 case Instruction::AND_INT:
1964 op = kOpAnd;
1965 break;
1966 case Instruction::OR_INT_2ADDR:
1967 is_two_addr = true;
1968 // Fallthrough
1969 case Instruction::OR_INT:
1970 op = kOpOr;
1971 break;
1972 case Instruction::XOR_INT_2ADDR:
1973 is_two_addr = true;
1974 // Fallthrough
1975 case Instruction::XOR_INT:
1976 op = kOpXor;
1977 break;
1978 case Instruction::SHL_INT_2ADDR:
1979 is_two_addr = true;
1980 // Fallthrough
1981 case Instruction::SHL_INT:
1982 shift_op = true;
1983 op = kOpLsl;
1984 break;
1985 case Instruction::SHR_INT_2ADDR:
1986 is_two_addr = true;
1987 // Fallthrough
1988 case Instruction::SHR_INT:
1989 shift_op = true;
1990 op = kOpAsr;
1991 break;
1992 case Instruction::USHR_INT_2ADDR:
1993 is_two_addr = true;
1994 // Fallthrough
1995 case Instruction::USHR_INT:
1996 shift_op = true;
1997 op = kOpLsr;
1998 break;
1999 default:
2000 LOG(FATAL) << "Invalid word arith op: " << opcode;
2001 }
2002
2003 // Can we convert to a two address instruction?
2004 if (!is_two_addr &&
2005 (mir_graph_->SRegToVReg(rl_dest.s_reg_low) ==
2006 mir_graph_->SRegToVReg(rl_lhs.s_reg_low))) {
2007 is_two_addr = true;
2008 }
2009
2010 // Get the div/rem stuff out of the way.
2011 if (is_div_rem) {
2012 rl_result = GenDivRem(rl_dest, rl_lhs, rl_rhs, op == kOpDiv, true);
2013 StoreValue(rl_dest, rl_result);
2014 return;
2015 }
2016
2017 if (unary) {
2018 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2019 rl_result = UpdateLoc(rl_dest);
2020 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002021 OpRegReg(op, rl_result.reg, rl_lhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002022 } else {
2023 if (shift_op) {
2024 // X86 doesn't require masking and must use ECX.
buzbee2700f7e2014-03-07 09:46:20 -08002025 RegStorage t_reg = TargetReg(kCount); // rCX
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002026 LoadValueDirectFixed(rl_rhs, t_reg);
2027 if (is_two_addr) {
2028 // Can we do this directly into memory?
2029 rl_result = UpdateLoc(rl_dest);
2030 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2031 if (rl_result.location != kLocPhysReg) {
2032 // Okay, we can do this into memory
buzbee2700f7e2014-03-07 09:46:20 -08002033 OpMemReg(op, rl_result, t_reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002034 FreeTemp(t_reg);
2035 return;
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002036 } else if (!IsFpReg(rl_result.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002037 // Can do this directly into the result register
buzbee2700f7e2014-03-07 09:46:20 -08002038 OpRegReg(op, rl_result.reg, t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002039 FreeTemp(t_reg);
2040 StoreFinalValue(rl_dest, rl_result);
2041 return;
2042 }
2043 }
2044 // Three address form, or we can't do directly.
2045 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2046 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002047 OpRegRegReg(op, rl_result.reg, rl_lhs.reg, t_reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002048 FreeTemp(t_reg);
2049 } else {
2050 // Multiply is 3 operand only (sort of).
2051 if (is_two_addr && op != kOpMul) {
2052 // Can we do this directly into memory?
2053 rl_result = UpdateLoc(rl_dest);
2054 if (rl_result.location == kLocPhysReg) {
2055 // Can we do this from memory directly?
2056 rl_rhs = UpdateLoc(rl_rhs);
2057 if (rl_rhs.location != kLocPhysReg) {
buzbee2700f7e2014-03-07 09:46:20 -08002058 OpRegMem(op, rl_result.reg, rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002059 StoreFinalValue(rl_dest, rl_result);
2060 return;
buzbee2700f7e2014-03-07 09:46:20 -08002061 } else if (!IsFpReg(rl_rhs.reg)) {
2062 OpRegReg(op, rl_result.reg, rl_rhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002063 StoreFinalValue(rl_dest, rl_result);
2064 return;
2065 }
2066 }
2067 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2068 if (rl_result.location != kLocPhysReg) {
2069 // Okay, we can do this into memory.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002070 OpMemReg(op, rl_result, rl_rhs.reg.GetReg());
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002071 return;
buzbee2700f7e2014-03-07 09:46:20 -08002072 } else if (!IsFpReg(rl_result.reg)) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002073 // Can do this directly into the result register.
buzbee2700f7e2014-03-07 09:46:20 -08002074 OpRegReg(op, rl_result.reg, rl_rhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002075 StoreFinalValue(rl_dest, rl_result);
2076 return;
2077 } else {
2078 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2079 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002080 OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002081 }
2082 } else {
2083 // Try to use reg/memory instructions.
2084 rl_lhs = UpdateLoc(rl_lhs);
2085 rl_rhs = UpdateLoc(rl_rhs);
2086 // We can't optimize with FP registers.
2087 if (!IsOperationSafeWithoutTemps(rl_lhs, rl_rhs)) {
2088 // Something is difficult, so fall back to the standard case.
2089 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2090 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2091 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002092 OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002093 } else {
2094 // We can optimize by moving to result and using memory operands.
2095 if (rl_rhs.location != kLocPhysReg) {
2096 // Force LHS into result.
Serguei Katkov66da1362014-03-14 13:33:33 +07002097 // We should be careful with order here
2098 // If rl_dest and rl_lhs points to the same VR we should load first
2099 // If the are different we should find a register first for dest
2100 if (mir_graph_->SRegToVReg(rl_dest.s_reg_low) == mir_graph_->SRegToVReg(rl_lhs.s_reg_low)) {
2101 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2102 rl_result = EvalLoc(rl_dest, kCoreReg, true);
2103 } else {
2104 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002105 LoadValueDirect(rl_lhs, rl_result.reg);
Serguei Katkov66da1362014-03-14 13:33:33 +07002106 }
buzbee2700f7e2014-03-07 09:46:20 -08002107 OpRegMem(op, rl_result.reg, rl_rhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002108 } else if (rl_lhs.location != kLocPhysReg) {
2109 // RHS is in a register; LHS is in memory.
2110 if (op != kOpSub) {
2111 // Force RHS into result and operate on memory.
2112 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002113 OpRegCopy(rl_result.reg, rl_rhs.reg);
2114 OpRegMem(op, rl_result.reg, rl_lhs);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002115 } else {
2116 // Subtraction isn't commutative.
2117 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2118 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2119 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002120 OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002121 }
2122 } else {
2123 // Both are in registers.
2124 rl_lhs = LoadValue(rl_lhs, kCoreReg);
2125 rl_rhs = LoadValue(rl_rhs, kCoreReg);
2126 rl_result = EvalLoc(rl_dest, kCoreReg, true);
buzbee2700f7e2014-03-07 09:46:20 -08002127 OpRegRegReg(op, rl_result.reg, rl_lhs.reg, rl_rhs.reg);
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002128 }
2129 }
2130 }
2131 }
2132 }
2133 StoreValue(rl_dest, rl_result);
2134}
2135
2136bool X86Mir2Lir::IsOperationSafeWithoutTemps(RegLocation rl_lhs, RegLocation rl_rhs) {
2137 // If we have non-core registers, then we can't do good things.
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002138 if (rl_lhs.location == kLocPhysReg && IsFpReg(rl_lhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002139 return false;
2140 }
Bill Buzbee00e1ec62014-02-27 23:44:13 +00002141 if (rl_rhs.location == kLocPhysReg && IsFpReg(rl_rhs.reg.GetReg())) {
Mark Mendellfeb2b4e2014-01-28 12:59:49 -08002142 return false;
2143 }
2144
2145 // Everything will be fine :-).
2146 return true;
2147}
Brian Carlstrom7940e442013-07-12 13:46:57 -07002148} // namespace art